TY - JOUR A1 - Niemann, Jan-Hendrik A1 - Uram, Samuel A1 - Wolf, Sarah A1 - Conrad, Natasa Djurdjevac A1 - Weiser, Martin T1 - Multilevel Optimization for Policy Design with Agent-Based Epidemic Models JF - Computational Science N2 - Epidemiological models can not only be used to forecast the course of a pandemic like COVID-19, but also to propose and design non-pharmaceutical interventions such as school and work closing. In general, the design of optimal policies leads to nonlinear optimization problems that can be solved by numerical algorithms. Epidemiological models come in different complexities, ranging from systems of simple ordinary differential equations (ODEs) to complex agent-based models (ABMs). The former allow a fast and straightforward optimization, but are limited in accuracy, detail, and parameterization, while the latter can resolve spreading processes in detail, but are extremely expensive to optimize. We consider policy optimization in a prototypical situation modeled as both ODE and ABM, review numerical optimization approaches, and propose a heterogeneous multilevel approach based on combining a fine-resolution ABM and a coarse ODE model. Numerical experiments, in particular with respect to convergence speed, are given for illustrative examples. Y1 - 2024 U6 - https://doi.org/10.1016/j.jocs.2024.102242 VL - 77 SP - 102242 ER - TY - CHAP A1 - Steyer, Joshua A1 - Chegini, Fatemeh A1 - StarĂ½, Tomas A1 - Potse, Mark A1 - Weiser, Martin A1 - Loewe, Axel T1 - Electrograms in a Cardiac Cell-by-Cell Model N2 - Cardiac electrograms are an important tool to study the spread of excitation waves inside the heart, which in turn underlie muscle contraction. Electrograms can be used to analyse the dynamics of these waves, e.g. in fibrotic tissue. In computational models, these analyses can be done with greater detail than during minimally invasive in vivo procedures. Whilst homogenised models have been used to study electrogram genesis, such analyses have not yet been done in cellularly resolved models. Such high resolution may be required to develop a thorough understanding of the mechanisms behind abnormal excitation patterns leading to arrhythmias. In this study, we derived electrograms from an excitation propagation simulation in the Extracellular, Membrane, Intracellular (EMI) model, which represents these three domains explicitly in the mesh. We studied the effects of the microstructural excitation dynamics on electrogram genesis and morphology. We found that electrograms are sensitive to the myocyte alignment and connectivity, which translates into micro-fractionations in the electrograms. Y1 - 2024 ER -