TY - CHAP A1 - Krause, Rolf A1 - Weiser, Martin T1 - Multilevel augmented Lagrangian solvers for overconstrained contact formulations T2 - ESAIM: ProcS N2 - Multigrid methods for two-body contact problems are mostly based on special mortar discretizations, nonlinear Gauss-Seidel solvers, and solution-adapted coarse grid spaces. Their high computational efficiency comes at the cost of a complex implementation and a nonsymmetric master-slave discretization of the nonpenetration condition. Here we investigate an alternative symmetric and overconstrained segment-to-segment contact formulation that allows for a simple implementation based on standard multigrid and a symmetric treatment of contact boundaries, but leads to nonunique multipliers. For the solution of the arising quadratic programs, we propose augmented Lagrangian multigrid with overlapping block Gauss-Seidel smoothers. Approximation and convergence properties are studied numerically at standard test problems. Y1 - 2021 U6 - https://doi.org/10.1051/proc/202171175 VL - 71 SP - 175 EP - 184 ER - TY - BOOK A1 - Deuflhard, Peter A1 - Weiser, Martin T1 - Numerische Mathematik 3. Adaptive Lösung partieller Differentialgleichungen Y1 - 2020 SN - 978-3-11-069168-9 U6 - https://doi.org/10.1515/9783110689655 PB - de Gruyter ET - 2 ER - TY - JOUR A1 - Götschel, Sebastian A1 - Schiela, Anton A1 - Weiser, Martin T1 - Kaskade 7 - a Flexible Finite Element Toolbox JF - Computers and Mathematics with Applications N2 - Kaskade 7 is a finite element toolbox for the solution of stationary or transient systems of partial differential equations, aimed at supporting application-oriented research in numerical analysis and scientific computing. The library is written in C++ and is based on the \textsc{Dune} interface. The code is independent of spatial dimension and works with different grid managers. An important feature is the mix-and-match approach to discretizing systems of PDEs with different ansatz and test spaces for all variables. We describe the mathematical concepts behind the library as well as its structure, illustrating its use at several examples on the way. Y1 - 2021 U6 - https://doi.org/10.1016/j.camwa.2020.02.011 VL - 81 SP - 444 EP - 458 ER - TY - GEN A1 - Schneck, Jakob A1 - Weiser, Martin A1 - Wende, Florian T1 - Impact of mixed precision and storage layout on additive Schwarz smoothers N2 - The growing discrepancy between CPU computing power and memory bandwidth drives more and more numerical algorithms into a bandwidth- bound regime. One example is the overlapping Schwarz smoother, a highly effective building block for iterative multigrid solution of elliptic equations with higher order finite elements. Two options of reducing the required memory bandwidth are sparsity exploiting storage layouts and representing matrix entries with reduced precision in floating point or fixed point format. We investigate the impact of several options on storage demand and contraction rate, both analytically in the context of subspace correction methods and numerically at an example of solid mechanics. Both perspectives agree on the favourite scheme: fixed point representation of Cholesky factors in nested dissection storage. T3 - ZIB-Report - 18-62 KW - higher order finite elements KW - mixed precision KW - overlapping Schwarz smoother Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71305 SN - 1438-0064 ER - TY - JOUR A1 - Chegini, Fatemeh A1 - Kopanicakova, Alena A1 - Krause, Rolf A1 - Weiser, Martin T1 - Efficient Identification of Scars using Heterogeneous Model Hierarchies JF - EP Europace N2 - Aims. Detection and quantification of myocardial scars are helpful both for diagnosis of heart diseases and for building personalized simulation models. Scar tissue is generally charac­terized by a different conduction of electrical excitation. We aim at estimating conductivity-related parameters from endocardial mapping data, in particular the conductivity tensor. Solving this inverse problem requires computationally expensive monodomain simulations on fine discretizations. Therefore, we aim at accelerating the estimation using a multilevel method combining electrophysiology models of different complexity, namely the mono­domain and the eikonal model. Methods. Distributed parameter estimation is performed by minimizing the misfit between simulated and measured electrical activity on the endocardial surface, subject to the mono­domain model and regularization, leading to a constrained optimization problem. We formulate this optimization problem, including the modeling of scar tissue and different regularizations, and design an efficient iterative solver. We consider monodomain grid hierarchies and monodomain-eikonal model hierarchies in a recursive multilevel trust-region method. Results. From several numerical examples, both the efficiency of the method and the estimation quality, depending on the data, are investigated. The multilevel solver is significantly faster than a comparable single level solver. Endocardial mapping data of realistic density appears to be just sufficient to provide quantitatively reasonable estimates of location, size, and shape of scars close to the endocardial surface. Conclusion. In several situations, scar reconstruction based on eikonal and monodomain models differ significantly, suggesting the use of the more accurate but more expensive monodomain model for this purpose. Still, eikonal models can be utilized to accelerate the computations considerably, enabling the use of complex electrophysiology models for estimating myocardial scars from endocardial mapping data. Y1 - 2021 U6 - https://doi.org/10.1093/europace/euaa402 VL - 23 SP - i113 EP - i122 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - A Discrete-Continuous Algorithm for Free Flight Planning N2 - We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach. T3 - ZIB-Report - 20-33 KW - shortest path KW - flight planning KW - free flight KW - discrete-continuous algorithm KW - optimal control KW - discrete optimization Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81343 SN - 1438-0064 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - A Discrete-Continuous Algorithm for Free Flight Planning JF - Algorithms N2 - We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach. KW - shortest path KW - flight planning KW - free flight KW - discrete-continuous algorithm KW - optimal control KW - discrete optimization Y1 - 2020 U6 - https://doi.org/10.3390/a14010004 SN - 1438-0064 VL - 14 IS - 1 SP - 4 PB - MDPI ER - TY - JOUR A1 - Schiela, Anton A1 - Stöcklein, Matthias A1 - Weiser, Martin T1 - A primal dual projection algorithm for efficient constraint preconditioning JF - SIAM Journal on Scientific Computing N2 - We consider a linear iterative solver for large scale linearly constrained quadratic minimization problems that arise, for example, in optimization with PDEs. By a primal-dual projection (PDP) iteration, which can be interpreted and analysed as a gradient method on a quotient space, the given problem can be solved by computing sulutions for a sequence of constrained surrogate problems, projections onto the feasible subspaces, and Lagrange multiplier updates. As a major application we consider a class of optimization problems with PDEs, where PDP can be applied together with a projected cg method using a block triangular constraint preconditioner. Numerical experiments show reliable and competitive performance for an optimal control problem in elasticity. Y1 - 2021 U6 - https://doi.org/10.1137/20M1380739 VL - 43 IS - 6 SP - A4095 EP - A4120 ER -