TY - GEN A1 - Sagnol, Guillaume A1 - Hege, Hans-Christian A1 - Weiser, Martin T1 - Using sparse kernels to design computer experiments with tunable precision N2 - Statistical methods to design computer experiments usually rely on a Gaussian process (GP) surrogate model, and typically aim at selecting design points (combinations of algorithmic and model parameters) that minimize the average prediction variance, or maximize the prediction accuracy for the hyperparameters of the GP surrogate. In many applications, experiments have a tunable precision, in the sense that one software parameter controls the tradeoff between accuracy and computing time (e.g., mesh size in FEM simulations or number of Monte-Carlo samples). We formulate the problem of allocating a budget of computing time over a finite set of candidate points for the goals mentioned above. This is a continuous optimization problem, which is moreover convex whenever the tradeoff function accuracy vs. computing time is concave. On the other hand, using non-concave weight functions can help to identify sparse designs. In addition, using sparse kernel approximations drastically reduce the cost per iteration of the multiplicative weights updates that can be used to solve this problem. T3 - ZIB-Report - 16-33 KW - Optimal design of computer experiments KW - Sparse kernels KW - Gaussian Process Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59605 SN - 1438-0064 ER - TY - GEN A1 - Weiser, Martin A1 - Erdmann, Bodo A1 - Schenkl, Sebastian A1 - Muggenthaler, Holger A1 - Hubig, Michael A1 - Mall, Gita A1 - Zachow, Stefan T1 - Uncertainty in Temperature-Based Determination of Time of Death N2 - Temperature-based estimation of time of death (ToD) can be per- formed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer mod- els. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We in- vestigate the impact of parameter variations and geometry representation on the estimated ToD based on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed to- mography (CT) data set, differentiating various organs and tissue types. From that we identify the most crucial parameters to measure or estimate, and obtain a local uncertainty quantifcation for the ToD. T3 - ZIB-Report - 17-18 KW - forensic medicine KW - determination of time of death KW - heat transfer equation KW - sensitivity i.r.t. thermal parameters KW - sensitivity i.r.t. geometric resolution Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-63818 SN - 1438-0064 ER - TY - GEN A1 - Weiser, Martin A1 - Ghosh, Sunayana T1 - Theoretically optimal inexact SDC methods N2 - In several inital value problems with particularly expensive right hand side computation, there is a trade-off between accuracy and computational effort in evaluating the right hand sides. We consider inexact spectral deferred correction (SDC) methods for solving such non-stiff initial value problems. SDC methods are interpreted as fixed point iterations and, due to their corrective iterative nature, allow to exploit the accuracy-work-tradeoff for a reduction of the total computational effort. On one hand we derive an error model bounding the total error in terms of the right hand side evaluation errors. On the other hand, we define work models describing the computational effort in terms of the evaluation accuracy. Combining both, a theoretically optimal tolerance selection is worked out by minimizing the total work subject to achieving the requested tolerance. T3 - ZIB-Report - 16-52 KW - Spectral deferred correction, initial value problems, error propagation, adaptive control of tolerances Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-53140 SN - 1438-0064 ER - TY - GEN A1 - Prüfert, Uwe A1 - Tröltzsch, Fredi A1 - Weiser, Martin T1 - The convergence of an interior point method for an elliptic control problem with mixed control-state constraints N2 - The paper addresses primal interior point method for state constrained PDE optimal control problems. By a Lavrentiev regularization, the state constraint is transformed to a mixed control-state constraint with bounded Lagrange multiplier. Existence and convergence of the central path are established, and linear convergence of a short-step pathfollowing method is shown. The behaviour of the regularizations are demonstrated by numerical examples. T3 - ZIB-Report - 04-47 KW - interior point methods in function space KW - optimal control KW - mixed control-state constraints KW - Lavrentiev regularization Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8223 ER - TY - GEN A1 - Weiser, Martin A1 - Deuflhard, Peter T1 - The Central Path towards the Numerical Solution of Optimal Control Problems N2 - A new approach to the numerical solution of optimal control problems including control and state constraints is presented. Like hybrid methods, the approach aims at combining the advantages of direct and indirect methods. Unlike hybrid methods, however, our method is directly based on interior-point concepts in function space --- realized via an adaptive multilevel scheme applied to the complementarity formulation and numerical continuation along the central path. Existence of the central path and its continuation towards the solution point is analyzed in some theoretical detail. An adaptive stepsize control with respect to the duality gap parameter is worked out in the framework of affine invariant inexact Newton methods. Finally, the performance of a first version of our new type of algorithm is documented by the successful treatment of the well-known intricate windshear problem. T3 - ZIB-Report - 01-12 KW - optimal control KW - interior point methods KW - affine invariance Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6380 ER - TY - GEN A1 - Schiela, Anton A1 - Weiser, Martin T1 - Superlinear Convergence of the Control Reduced Interior Point Method for PDE Constrained Optimization N2 - A thorough convergence analysis of the Control Reduced Interior Point Method in function space is performed. This recently proposed method is a primal interior point pathfollowing scheme with the special feature, that the control variable is eliminated from the optimality system. Apart from global linear convergence we show, that this method converges locally almost quadratically, if the optimal solution satisfies a function space analogue to a non-degeneracy condition. In numerical experiments we observe, that a prototype implementation of our method behaves in compliance with our theoretical results. T3 - ZIB-Report - 05-15 KW - interior point methods in function space KW - optimal control KW - superlinear convergence Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8490 ER - TY - GEN A1 - Weiser, Martin A1 - Götschel, Sebastian T1 - State Trajectory Compression for Optimal Control with Parabolic PDEs N2 - In optimal control problems with nonlinear time-dependent 3D PDEs, full 4D discretizations are usually prohibitive due to the storage requirement. For this reason gradient and quasi-Newton methods working on the reduced functional are often employed. The computation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. The state enters into the adjoint equation, again requiring the storage of a full 4D data set. We propose a lossy compression algorithm using an inexact but cheap predictor for the state data, with additional entropy coding of prediction errors. As the data is used inside a discretized, iterative algorithm, lossy coding maintaining an error bound is sufficient. T3 - ZIB-Report - 10-05 KW - optimal control KW - adjoint gradient computation KW - trajectory storage Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11676 SN - 1438-0064 ER - TY - GEN A1 - Weiser, Martin A1 - Scacchi, Simone T1 - Spectral Deferred Correction methods for adaptive electro-mechanical coupling in cardiac simulation N2 - We investigate spectral deferred correction (SDC) methods for time stepping and their interplay with spatio-temporal adaptivity, applied to the solution of the cardiac electro-mechanical coupling model. This model consists of the Monodomain equations, a reaction-diffusion system modeling the cardiac bioelectrical activity, coupled with a quasi-static mechanical model describing the contraction and relaxation of the cardiac muscle. The numerical approximation of the cardiac electro-mechanical coupling is a challenging multiphysics problem, because it exhibits very different spatial and temporal scales. Therefore, spatio-temporal adaptivity is a promising approach to reduce the computational complexity. SDC methods are simple iterative methods for solving collocation systems. We exploit their flexibility for combining them in various ways with spatio-temporal adaptivity. The accuracy and computational complexity of the resulting methods are studied on some numerical examples. T3 - ZIB-Report - 14-22 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-50695 SN - 1438-0064 ER - TY - GEN A1 - Götschel, Sebastian A1 - Weiser, Martin A1 - Schiela, Anton T1 - Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox N2 - This paper presents concepts and implementation of the finite element toolbox Kaskade 7, a flexible C++ code for solving elliptic and parabolic PDE systems. Issues such as problem formulation, assembly and adaptivity are discussed at the example of optimal control problems. Trajectory compression for parabolic optimization problems is considered as a case study. T3 - ZIB-Report - 10-25 KW - partial differential equations KW - optimal control KW - finite elements KW - generic programming KW - adaptive methods Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11909 SN - 1438-0064 ER - TY - GEN A1 - Götschel, Sebastian A1 - von Tycowicz, Christoph A1 - Polthier, Konrad A1 - Weiser, Martin T1 - Reducing Memory Requirements in Scientific Computing and Optimal Control N2 - In high accuracy numerical simulations and optimal control of time-dependent processes, often both many time steps and fine spatial discretizations are needed. Adjoint gradient computation, or post-processing of simulation results, requires the storage of the solution trajectories over the whole time, if necessary together with the adaptively refined spatial grids. In this paper we discuss various techniques to reduce the memory requirements, focusing first on the storage of the solution data, which typically are double precision floating point values. We highlight advantages and disadvantages of the different approaches. Moreover, we present an algorithm for the efficient storage of adaptively refined, hierarchic grids, and the integration with the compressed storage of solution data. T3 - ZIB-Report - 13-64 KW - optimal control KW - trajectory storage KW - mesh compression KW - compression Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42695 SN - 1438-0064 ER - TY - GEN A1 - Götschel, Sebastian A1 - Höhne, Christian A1 - Kolkoori, Sanjeevareddy A1 - Mitzscherling, Steffen A1 - Prager, Jens A1 - Weiser, Martin T1 - Ray Tracing Boundary Value Problems: Simulation and SAFT Reconstruction for Ultrasonic Testing N2 - The application of advanced imaging techniques for the ultrasonic inspection of inhomogeneous anisotropic materials like austenitic and dissimilar welds requires information about acoustic wave propagation through the material, in particular travel times between two points in the material. Forward ray tracing is a popular approach to determine traveling paths and arrival times but is ill suited for inverse problems since a large number of rays have to be computed in order to arrive at prescribed end points. In this contribution we discuss boundary value problems for acoustic rays, where the ray path between two given points is determined by solving the eikonal equation. The implementation of such a two point boundary value ray tracer for sound field simulations through an austenitic weld is described and its efficiency as well as the obtained results are compared to those of a forward ray tracer. The results are validated by comparison with experimental results and commercially available UT simulation tools. As an application, we discuss an implementation of the method for SAFT (Synthetic Aperture Focusing Technique) reconstruction. The ray tracer calculates the required travel time through the anisotropic columnar grain structure of the austenitic weld. There, the formulation of ray tracing as a boundary value problem allows a straightforward derivation of the ray path from a given transducer position to any pixel in the reconstruction area and reduces the computational cost considerably. T3 - ZIB-Report - 16-14 KW - ray tracing KW - ODE boundary value problems KW - ultrasonics KW - nondestructive testing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-58386 UR - https://www.wcndt2016.com/portals/wcndt/bb/Fr1H4.pdf SN - 1438-0064 ER - TY - GEN A1 - Götschel, Sebastian A1 - Maierhofer, Christiane A1 - Müller, Jan P. A1 - Rothbart, Nick A1 - Weiser, Martin T1 - Quantitative Defect Reconstruction in Active Thermography for Fiber-Reinforced Composites N2 - Carbon-fiber reinforced composites are becoming more and more important in the production of light-weight structures, e.g., in the automotive and aerospace industry. Thermography is often used for non-destructive testing of these products, especially to detect delaminations between different layers of the composite. In this presentation, we aim at methods for defect reconstruction from thermographic measurements of such carbon-fiber reinforced composites. The reconstruction results shall not only allow to locate defects, but also give a quantitative characterization of the defect properties. We discuss the simulation of the measurement process using finite element methods, as well as the experimental validation on flat bottom holes. Especially in pulse thermography, thin boundary layers with steep temperature gradients occurring at the heated surface need to be resolved. Here we use the combination of a 1D analytical solution combined with numerical solution of the remaining defect equation. We use the simulations to identify material parameters from the measurements. Finally, fast heuristics for reconstructing defect geometries are applied to the acquired data, and compared for their accuracy and utility in detecting different defects like back surface defects or delaminations. T3 - ZIB-Report - 16-13 KW - thermography KW - inverse problems KW - parameter identification KW - geometry identification KW - nondestructive testing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-58374 UR - https://www.wcndt2016.com/portals/wcndt/bb/Th4C4.pdf SN - 1438-0064 ER - TY - GEN A1 - Weiser, Martin T1 - Pointwise Nonlinear Scaling for Reaction-Diffusion-Equations N2 - Parabolic reaction-diffusion systems may develop sharp moving reaction fronts which pose a challenge even for adaptive finite element methods. We propose a method to transform the equation into an equivalent form that usually exhibits solutions which are easier to discretize, giving higher accuracy for a given number of degrees of freedom. The transformation is realized as an efficiently computable pointwise nonlinear scaling that is optimized for prototypical planar travelling wave solutions of the underlying reaction-diffusion equation. The gain in either performance or accuracy is demonstrated on different numerical examples. T3 - ZIB-Report - 07-45 KW - reaction-diffusion equations KW - travelling waves KW - nonlinear scaling KW - discretization error Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10493 SN - 1438-0064 ER - TY - GEN A1 - Weiser, Martin T1 - Optimization and Identification in Regional Hyperthermia N2 - Regional hyperthermia is a cancer therapy aiming at heating tumors using phased array applicators. This article provides an overview over current mathematical challenges of delivering individually optimal treatments. The focus is on therapy planning and identification of technical as well as physiological quantities from MR thermometry measurements. T3 - ZIB-Report - 08-40 KW - Hyperthermie-Therapieplanung KW - Identifizierung KW - MR-Thermometrie KW - Innere-Punkte-Methoden KW - hyperthermia treatment planning KW - identification KW - MR thermometry KW - interior point methods Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10916 SN - 1438-0064 ER - TY - GEN A1 - Weiser, Martin A1 - Freytag, Yvonne A1 - Erdmann, Bodo A1 - Hubig, Michael A1 - Mall, Gita T1 - Optimal Design of Experiments for Estimating the Time of Death in Forensic Medicine N2 - Estimation of time of death based on a single measurement of body core temperature is a standard procedure in forensic medicine. Mechanistic models using simulation of heat transport promise higher accuracy than established phenomenological models in particular in nonstandard situations, but involve many not exactly known physical parameters. Identifying both time of death and physical parameters from multiple temperature measurements is one possibility to reduce the uncertainty significantly. In this paper, we consider the inverse problem in a Bayesian setting and perform both local and sampling-based uncertainty quantification, where proper orthogonal decomposition is used as model reduction for fast solution of the forward model. Based on the local uncertainty quantification, optimal design of experiments is performed in order to minimize the uncertainty in the time of death estimate for a given number of measurements. For reasons of practicability, temperature acquisition points are selected from a set of candidates in different spatial and temporal locations. Applied to a real corpse model, a significant accuracy improvement is obtained already with a small number of measurements. T3 - ZIB-Report - 18-08 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-67247 SN - 1438-0064 ER - TY - GEN A1 - Moualeu-Ngangue, Dany Pascal A1 - Weiser, Martin A1 - Ehrig, Rainald A1 - Deuflhard, Peter T1 - Optimal control for a tuberculosis model with undetected cases in Cameroon N2 - This paper considers the optimal control of tuberculosis through education, diagnosis campaign and chemoprophylaxis of latently infected. A mathematical model which includes important components such as undiagnosed infectious, diagnosed infectious, latently infected and lost-sight infectious is formulated. The model combines a frequency dependent and a density dependent force of infection for TB transmission. Through optimal control theory and numerical simulations, a cost-effective balance of two different intervention methods is obtained. Seeking to minimize the amount of money the government spends when tuberculosis remain endemic in the Cameroonian population, Pontryagin's maximum principle is used to characterize the optimal control. The optimality system is derived and solved numerically using the forward-backward sweep method (FBSM). Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods. It comes out that combining chemoprophylaxis and education, the burden of TB can be reduced by 80 % in 10 years T3 - ZIB-Report - 13-73 KW - Tuberculosis KW - Optimal control KW - Nonlinear dynamical systems Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-43142 SN - 1438-0064 ER - TY - GEN A1 - Weiser, Martin T1 - On goal-oriented adaptivity for elliptic optimal control problems N2 - The paper proposes goal-oriented error estimation and mesh refinement for optimal control problems with elliptic PDE constraints using the value of the reduced cost functional as quantity of interest. Error representation, hierarchical error estimators, and greedy-style error indicators are derived and compared to their counterparts when using the all-at-once cost functional as quantity of interest. Finally, the efficiency of the error estimator and generated meshes are demonstrated on numerical examples. T3 - ZIB-Report - 09-08 KW - optimal control KW - error estimation KW - adaptive mesh refinement Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11192 SN - 1438-0064 ER - TY - GEN A1 - Deuflhard, Peter A1 - Schiela, Anton A1 - Weiser, Martin T1 - Mathematical Cancer Therapy Planning in Deep Regional Hyperthermia N2 - This paper surveys the required mathematics for a typical challenging problem from computational medicine, the cancer therapy planning in deep regional hyperthermia. In the course of many years of close cooperation with clinics, the medical problem gave rise to quite a number of subtle mathematical problems, part of which had been unsolved when the common project started. Efficiency of numerical algorithms, i.e. computational speed and monitored reliability, play a decisive role for the medical treatment. Off-the-shelf software had turned out to be not sufficient to meet the requirements of medicine. Rather, new mathematical theory as well as new numerical algorithms had to be developed. In order to make our algorithms useful in the clinical environment, new visualization software, a virtual lab, including 3D geometry processing of individual virtual patients had to be designed and implemented. Moreover, before the problems could be attacked by numerical algorithms, careful mathematical modelling had to be done. Finally, parameter identification and constrained optimization for the PDEs had to be newly analyzed and realized over the individual patient's geometry. Our new techniques had an impact on the specificity of the individual patients' treatment and on the construction of an improved hyperthermia applicator. T3 - ZIB-Report - 11-39 KW - hyperthermia therapy planning KW - mathematical modelling KW - Maxwell equations KW - state constraints KW - parameter identification Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14204 SN - 1438-0064 ER - TY - GEN A1 - Fischer, Lisa A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - Lossy data compression reduces communication time in hybrid time-parallel integrators N2 - Parallel in time methods for solving initial value problems are a means to increase the parallelism of numerical simulations. Hybrid parareal schemes interleaving the parallel in time iteration with an iterative solution of the individual time steps are among the most efficient methods for general nonlinear problems. Despite the hiding of communication time behind computation, communication has in certain situations a significant impact on the total runtime. Here we present strict, yet no sharp, error bounds for hybrid parareal methods with inexact communication due to lossy data compression, and derive theoretical estimates of the impact of compression on parallel efficiency of the algorithms. These and some computational experiments suggest that compression is a viable method to make hybrid parareal schemes robust with respect to low bandwidth setups. T3 - ZIB-Report - 17-25 KW - parallel-in-time integration KW - hybrid parareal KW - convergence KW - lossy compression KW - MPI Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-63961 SN - 1438-0064 ER - TY - GEN A1 - Götschel, Sebastian A1 - Nagaiah, Chamakuri A1 - Kunisch, Karl A1 - Weiser, Martin T1 - Lossy Compression in Optimal Control of Cardiac Defibrillation N2 - This paper presents efficient computational techniques for solving an optimization problem in cardiac defibrillation governed by the monodomain equations. Time-dependent electrical currents injected at different spatial positions act as the control. Inexact Newton-CG methods are used, with reduced gradient computation by adjoint solves. In order to reduce the computational complexity, adaptive mesh refinement for state and adjoint equations is performed. To reduce the high storage and bandwidth demand imposed by adjoint gradient and Hessian-vector evaluations, a lossy compression technique for storing trajectory data is applied. An adaptive choice of quantization tolerance based on error estimates is developed in order to ensure convergence. The efficiency of the proposed approach is demonstrated on numerical examples. T3 - ZIB-Report - 13-26 KW - monodomain model KW - defibrillation KW - optimal control KW - Newton-CG KW - trajectory storage KW - compression Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18566 SN - 1438-0064 ER - TY - GEN A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - Lossy Compression for PDE-constrained Optimization: Adaptive Error Control N2 - For the solution of optimal control problems governed by nonlinear parabolic PDEs, methods working on the reduced objective functional are often employed to avoid a full spatio-temporal discretization of the problem. The evaluation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the ad-joint equation. The state enters into the adjoint equation, requiring the storage of a full 4D data set. If Newton-CG methods are used, two additional trajectories have to be stored. To get numerical results which are accurate enough, in many case very fine discretizations in time and space are necessary, which leads to a significant amount of data to be stored and transmitted to mass storage. Lossy compression methods were developed to overcome the storage problem by reducing the accuracy of the stored trajectories. The inexact data induces errors in the reduced gradient and reduced Hessian. In this paper, we analyze the influence of such a lossy trajectory compression method on Newton-CG methods for optimal control of parabolic PDEs and design an adaptive strategy for choosing appropriate quantization tolerances. T3 - ZIB-Report - 13-27 KW - optimal control KW - semilinear parabolic PDEs KW - Newton-CG KW - trajectory storage KW - lossy compression Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18575 SN - 1438-0064 ER - TY - GEN A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - Lossy Compression for Large Scale PDE Problems N2 - Solvers for partial differential equations (PDE) are one of the cornerstones of computational science. For large problems, they involve huge amounts of data that needs to be stored and transmitted on all levels of the memory hierarchy. Often, bandwidth is the limiting factor due to relatively small arithmetic intensity, and increasingly so due to the growing disparity between computing power and bandwidth. Consequently, data compression techniques have been investigated and tailored towards the specific requirements of PDE solvers during the last decades. This paper surveys data compression challenges and corresponding solution approaches for PDE problems, covering all levels of the memory hierarchy from mass storage up to main memory. Exemplarily, we illustrate concepts at particular methods, and give references to alternatives. T3 - ZIB-Report - 19-32 KW - partial differential equation KW - data compression KW - floating point compression KW - lossy compression Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73817 SN - 1438-0064 ER - TY - GEN A1 - Götschel, Sebastian A1 - Schiela, Anton A1 - Weiser, Martin T1 - Kaskade 7 -- a Flexible Finite Element Toolbox N2 - Kaskade 7 is a finite element toolbox for the solution of stationary or transient systems of partial differential equations, aimed at supporting application-oriented research in numerical analysis and scientific computing. The library is written in C++ and is based on the Dune interface. The code is independent of spatial dimension and works with different grid managers. An important feature is the mix-and-match approach to discretizing systems of PDEs with different ansatz and test spaces for all variables. We describe the mathematical concepts behind the library as well as its structure, illustrating its use at several examples on the way. T3 - ZIB-Report - 19-48 KW - finite elements KW - generic programming KW - partial differential equations Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74616 SN - 1438-0064 ER - TY - GEN A1 - Weiser, Martin T1 - Interior Point Methods in Function Space N2 - A primal-dual interior point method for optimal control problems is considered. The algorithm is directly applied to the infinite dimensional problem. Existence and convergence of the central path are analyzed, and linear convergence of a short step pathfollowing method is established. T3 - ZIB-Report - 03-35 KW - interior point methods in function space KW - optimal control KW - complementarity functions Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7578 ER - TY - GEN A1 - Schenk, Olaf A1 - Wächter, Andreas A1 - Weiser, Martin T1 - Inertia Revealing Preconditioning For Large-Scale Nonconvex Constrained Optimization N2 - Fast nonlinear programming methods following the all-at-once approach usually employ Newton's method for solving linearized Karush-Kuhn-Tucker (KKT) systems. In nonconvex problems, the Newton direction is only guaranteed to be a descent direction if the Hessian of the Lagrange function is positive definite on the nullspace of the active constraints, otherwise some modifications to Newton's method are necessary. This condition can be verified using the signs of the KKT's eigenvalues (inertia), which are usually available from direct solvers for the arising linear saddle point problems. Iterative solvers are mandatory for very large-scale problems, but in general do not provide the inertia. Here we present a preconditioner based on a multilevel incomplete $LBL^T$ factorization, from which an approximation of the inertia can be obtained. The suitability of the heuristics for application in optimization methods is verified on an interior point method applied to the CUTE and COPS test problems, on large-scale 3D PDE-constrained optimal control problems, as well as 3D PDE-constrained optimization in biomedical cancer hyperthermia treatment planning. The efficiency of the preconditioner is demonstrated on convex and nonconvex problems with $150^3$ state variables and $150^2$ control variables, both subject to bound constraints. T3 - ZIB-Report - 07-32 KW - nonconvex constrained optimization KW - interior-point method KW - inertia KW - multilevel incomplete factorization Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10314 SN - 1438-0064 ER - TY - GEN A1 - Weiser, Martin A1 - Schiela, Anton T1 - Function space interior point methods for PDE constrained optimization N2 - A primal-dual interior point method for optimal control problems with PDE constraints is considered. The algorithm is directly applied to the infinite dimensional problem. Existence and convergence of the central path are analyzed. Numerical results from an inexact continuation method applied to a model problem are shown. T3 - ZIB-Report - 04-27 KW - interior point methods in function space KW - optimal control KW - complementarity functions Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8027 ER - TY - GEN A1 - Weiser, Martin T1 - Faster SDC convergence on non-equidistant grids by DIRK sweeps N2 - Spectral deferred correction methods for solving stiff ODEs are known to converge rapidly towards the collocation limit solution on equidistant grids, but show a much less favourable contraction on non-equidistant grids such as Radau-IIa points. We interprete SDC methods as fixed point iterations for the collocation system and propose new DIRK-type sweeps for stiff problems based on purely linear algebraic considerations. Good convergence is recovered also on non-equidistant grids. The properties of different variants are explored on a couple of numerical examples. T3 - ZIB-Report - 13-30 KW - spectral deferred correction Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18662 SN - 1438-0064 ER - TY - GEN A1 - Günther, Andreas A1 - Lamecker, Hans A1 - Weiser, Martin T1 - Direct LDDMM of Discrete Currents with Adaptive Finite Elements N2 - We consider Large Deformation Diffeomorphic Metric Mapping of general $m$-currents. After stating an optimization algorithm in the function space of admissable morph generating velocity fields, two innovative aspects in this framework are presented and numerically investigated: First, we spatially discretize the velocity field with conforming adaptive finite elements and discuss advantages of this new approach. Second, we directly compute the temporal evolution of discrete $m$-current attributes. T3 - ZIB-Report - 11-22 KW - Large Deformation KW - Diffeomorphic Registration KW - Matching KW - Currents KW - Adaptive Finite Elements Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-13090 ER - TY - GEN A1 - Weiser, Martin A1 - Röllig, Mathias A1 - Arndt, Ralf A1 - Erdmann, Bodo T1 - Development and test of a numerical model for pulse thermography in civil engineering N2 - Pulse thermography of concrete structures is used in civil engineering for detecting voids, honeycombing and delamination. The physical situation is readily modeled by Fourier's law. Despite the simplicity of the PDE structure, quantitatively realistic numerical 3D simulation faces two major obstacles. First, the short heating pulse induces a thin boundary layer at the heated surface which encapsulates all information and therefore has to be resolved faithfully. Even with adaptive mesh refinement techniques, obtaining useful accuracies requires an unsatisfactorily fine discretization. Second, bulk material parameters and boundary conditions are barely known exactly. We address both issues by a semi-analytic reformulation of the heat transport problem and by parameter identification. Numerical results are compared with measurements of test specimens. T3 - ZIB-Report - 08-45 KW - finite element model KW - KARDOS KW - pulse thermography KW - civil engineering KW - inverse solution Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10980 SN - 1438-0064 ER - TY - GEN A1 - Götschel, Sebastian A1 - Weiser, Martin A1 - Maierhofer, Christiane A1 - Richter, Regina T1 - Data Enhancement for Active Thermography N2 - Pulse thermography is a non-destructive testing method based on infrared imaging of transient thermal patterns. Heating the surface of the structure under test for a short period of time generates a non-stationary temperature distribution and thus a thermal contrast between the defect and the sound material. Due to measurement noise, preprocessing of the experimental data is necessary, before reconstruction algorithms can be applied. We propose a decomposition of the measured temperature into Green's function solutions to eliminate noise. T3 - ZIB-Report - 12-20 KW - data enhancement KW - active thermography KW - quantitative reconstruction KW - Green's functions Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15243 UR - http://qirt.gel.ulaval.ca/archives/qirt2012/papers/QIRT-2012-167.pdf SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - Convergence Properties of Newton's Method for Globally Optimal Free Flight Trajectory Optimization N2 - The algorithmic efficiency of Newton-based methods for Free Flight Trajectory Optimization is heavily influenced by the size of the domain of convergence. We provide numerical evidence that the convergence radius is much larger in practice than what the theoretical worst case bounds suggest. The algorithm can be further improved by a convergence-enhancing domain decomposition. T3 - ZIB-Report - 23-19 KW - shortest path KW - flight planning KW - free flight KW - optimal control KW - global optimization KW - Newton's method Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-91309 SN - 1438-0064 ER - TY - GEN A1 - Powell, Gary A1 - Weiser, Martin T1 - Container Adaptors N2 - The C++ standard template library has many useful containers for data. The standard library includes two adpators, queue, and stack. The authors have extended this model along the lines of relational database semantics. Sometimes the analogy is striking, and we will point it out occasionally. An adaptor allows the standard algorithms to be used on a subset or modification of the data without having to copy the data elements into a new container. The authors provide many useful adaptors which can be used together to produce interesting views of data in a container. T3 - ZIB-Report - SC-99-41 KW - C++ KW - STL KW - views Y1 - 1999 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-4308 ER - TY - GEN A1 - Schiela, Anton A1 - Weiser, Martin T1 - Barrier methods for a control problem from hyperthermia treatment planning N2 - We consider an optimal control problem from hyperthermia treatment planning and its barrier regularization. We derive basic results, which lay the groundwork for the computation of optimal solutions via an interior point path-following method. Further, we report on a numerical implementation of such a method and its performance at an example problem. T3 - ZIB-Report - 09-36 KW - hyperthermia treatment planning KW - optimal control KW - barrier methods Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11567 SN - 1438-0064 ER - TY - GEN A1 - Weiser, Martin A1 - Schiela, Anton A1 - Deuflhard, Peter T1 - Asymptotic Mesh Independence of Newton's Method Revisited N2 - The paper presents a new affine invariant theory on asymptotic mesh independence of Newton's method in nonlinear PDEs. Compared to earlier attempts, the new approach is both much simpler and more natural from the algorithmic point of view. The theory is exemplified at collocation methods for ODE boundary value problems and at finite element methods for elliptic PDE problems. T3 - ZIB-Report - 03-13 KW - mesh independence KW - nonlinear partial differential equations KW - Newton method KW - finite element method KW - collocation method Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7352 ER - TY - GEN A1 - Lubkoll, Lars A1 - Schiela, Anton A1 - Weiser, Martin T1 - An optimal control problem in polyconvex hyperelasticity N2 - We consider a shape implant design problem that arises in the context of facial surgery. We introduce a reformulation as an optimal control problem, where the control acts as a boundary force. The state is modelled as a minimizer of a polyconvex hyperelastic energy functional. We show existence of optimal solutions and derive - on a formal level - first order optimality conditions. Finally, preliminary numerical results are presented. T3 - ZIB-Report - 12-08 KW - polyconvex elasticity KW - implant design KW - optimal control Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14745 SN - 1438-0064 ER - TY - GEN A1 - Lubkoll, Lars A1 - Schiela, Anton A1 - Weiser, Martin T1 - An affine covariant composite step method for optimization with PDEs as equality constraints N2 - We propose a composite step method, designed for equality constrained optimization with partial differential equations. Focus is laid on the construction of a globalization scheme, which is based on cubic regularization of the objective and an affine covariant damped Newton method for feasibility. We show finite termination of the inner loop and fast local convergence of the algorithm. We discuss preconditioning strategies for the iterative solution of the arising linear systems with projected conjugate gradient. Numerical results are shown for optimal control problems subject to a nonlinear heat equation and subject to nonlinear elastic equations arising from an implant design problem in craniofacial surgery. T3 - ZIB-Report - 15-09 KW - composite step methods KW - cubic regularization KW - affine covariant KW - optimization with PDEs Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-53954 SN - 1438-0064 ER - TY - GEN A1 - Volkwein, Stefan A1 - Weiser, Martin T1 - Affine Invariant Convergence Analysis for Inexact Augmented Lagrangian-SQP Methods N2 - An affine invariant convergence analysis for inexact augmented Lagrangian-SQP methods is presented. The theory is used for the construction of an accuracy matching between iteration errors and truncation errors, which arise from the inexact linear system solves. The theoretical investigations are illustrated numerically by an optimal control problem for the Burgers equation. T3 - ZIB-Report - 00-56 KW - nonlinear programming KW - multiplier methods KW - affine invariant norms KW - Burgers' equation Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6243 ER - TY - GEN A1 - Deuflhard, Peter A1 - Nowak, Ulrich A1 - Weiser, Martin T1 - Affine Invariant Adaptive Newton Codes for Discretized PDEs N2 - The paper deals with three different Newton algorithms that have recently been worked out in the general frame of affine invariance. Of particular interest is their performance in the numerical solution of discretized boundary value problems (BVPs) for nonlinear partial differential equations (PDEs). Exact Newton methods, where the arising linear systems are solved by direct elimination, and inexact Newton methods, where an inner iteration is used instead, are synoptically presented, both in affine invariant convergence theory and in numerical experiments. The three types of algorithms are: (a) affine covariant (formerly just called affine invariant) Newton algorithms, oriented toward the iterative errors, (b) affine contravariant Newton algorithms, based on iterative residual norms, and (c) affine conjugate Newton algorithms for convex optimization problems and discrete nonlinear elliptic PDEs. T3 - ZIB-Report - 02-33 KW - Affine invariant Newton methods KW - global Newton methods KW - inexact Newton methods KW - adaptive trust region methods KW - nonlinear partial differential equa Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7005 ER - TY - GEN A1 - Weiser, Martin A1 - Deuflhard, Peter A1 - Erdmann, Bodo T1 - Affine conjugate adaptive Newton methods for nonlinear elastomechanics N2 - The paper extends affine conjugate Newton methods from convex to nonconvex minimization, with particular emphasis on PDE problems originating from compressible hyperelasticity. Based on well-known schemes from finite dimensional nonlinear optimization, three different algorithmic variants are worked out in a function space setting, which permits an adaptive multilevel finite element implementation. These algorithms are tested on two well-known 3D test problems and a real-life example from surgical operation planning. T3 - ZIB-Report - 04-01 KW - affine conjugate Newton methods KW - nonconvex minimization KW - nonlinear elastomechnics KW - cranio-maxillofacial surgery KW - soft tissue simulation KW - multilev Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7768 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - A Discrete-Continuous Algorithm for Free Flight Planning N2 - We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach. T3 - ZIB-Report - 20-33 KW - shortest path KW - flight planning KW - free flight KW - discrete-continuous algorithm KW - optimal control KW - discrete optimization Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81343 SN - 1438-0064 ER - TY - GEN A1 - Weiser, Martin A1 - Gänzler, Tobias A1 - Schiela, Anton T1 - A Control Reduced Primal Interior Point Method for PDE Constrained Optimization N2 - A primal interior point method for control constrained optimal control problems with PDE constraints is considered. Pointwise elimination of the control leads to a homotopy in the remaining state and dual variables, which is addressed by a short step pathfollowing method. The algorithm is applied to the continuous, infinite dimensional problem, where discretization is performed only in the innermost loop when solving linear equations. The a priori elimination of the least regular control permits to obtain the required accuracy with comparable coarse meshes. Convergence of the method and discretization errors are studied, and the method is illustrated at two numerical examples. T3 - ZIB-Report - 04-38 KW - interior point methods in function space KW - optimal control KW - finite elements KW - discretization error Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8138 ER -