TY - JOUR A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Seebass, Martin T1 - A new nonlinear elliptic multilevel FEM in clinical cancer therapy planning JF - Comput. Vis. Sci. Y1 - 2000 VL - 3 SP - 115 EP - 120 ER - TY - JOUR A1 - Hammerschmidt, Martin A1 - Weiser, Martin A1 - Santiago, Xavier Garcia A1 - Zschiedrich, Lin A1 - Bodermann, Bernd A1 - Burger, Sven T1 - Quantifying parameter uncertainties in optical scatterometry using Bayesian inversion JF - Proc. SPIE Y1 - 2017 U6 - https://doi.org/10.1117/12.2270596 VL - 10330 SP - 1033004 ER - TY - JOUR A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Seebaß, Martin T1 - A New Nonlinear Elliptic Multilevel FEM Applied to Regional Hyperthermia JF - Comput. Visual. Sci. Y1 - 2000 U6 - https://doi.org/10.1007/PL00013546 VL - 3 SP - 1 EP - 6 ER - TY - JOUR A1 - Hammerschmidt, Martin A1 - Schneider, Philipp-Immanuel A1 - Santiago, Xavier Garcia A1 - Zschiedrich, Lin A1 - Weiser, Martin A1 - Burger, Sven T1 - Solving inverse problems appearing in design and metrology of diffractive optical elements by using Bayesian optimization JF - Proc. SPIE Y1 - 2018 U6 - https://doi.org/10.1117/12.2315468 VL - 10694 SP - 1069407 ER - TY - JOUR A1 - Schenk, O. A1 - Wächter, Andreas A1 - Weiser, Martin T1 - Inertia Revealing Preconditioning For Large-Scale Nonconvex Constrained Optimization JF - SIAM J. Sci. Comp. Y1 - 2008 VL - 31 IS - 2 SP - 939 EP - 960 ER - TY - JOUR A1 - Weiser, Martin A1 - Deuflhard, Peter T1 - Inexact central path following algorithms for optimal control problems JF - SIAM J. Control Opt. Y1 - 2007 VL - 46 IS - 3 SP - 792 EP - 815 ER - TY - JOUR A1 - Schiela, Anton A1 - Weiser, Martin T1 - Superlinear convergence of the Control Reduced Interior Point Method for PDE Constrained Optimization JF - Computational Optimization and Applications Y1 - 2008 VL - 39 IS - 3 SP - 369 EP - 393 ER - TY - JOUR A1 - Gänzler, Tobias A1 - Volkwein, S. A1 - Weiser, Martin T1 - SQP methods for parameter identification problems arising in hyperthermia JF - Optim. Methods Softw. Y1 - 2006 VL - 21 IS - 6 SP - 869 EP - 887 ER - TY - JOUR A1 - Griesse, Roland A1 - Weiser, Martin T1 - On the Interplay Between Interior Point Approximation and Parametric Sensitivities in Optimal Control JF - Journal of Mathematical Analysis and Applications Y1 - 2008 SP - 771 EP - 793 ER - TY - JOUR A1 - Gellermann, Johanna A1 - Weihrauch, Mirko A1 - Cho, C. A1 - Wlodarczyk, Waldemar A1 - Fähling, Horst A1 - Felix, Roland A1 - Budach, Volker A1 - Weiser, Martin A1 - Nadobny, Johanna A1 - Wust, Peter T1 - Comparison of MR-thermography and planning calculations in phantoms JF - Medical Physics Y1 - 2006 VL - 33 SP - 3912 EP - 3920 ER - TY - JOUR A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Zachow, Stefan T1 - Mathematics in Facial Surgery JF - AMS Notices Y1 - 2006 VL - 53 IS - 9 SP - 1012 EP - 1016 ER - TY - JOUR A1 - Prüfert, Uwe A1 - Tröltzsch, Fredi A1 - Weiser, Martin T1 - The convergence of an interior point method for an elliptic control problem with mixed control-state constraints JF - Comput. Optim. Appl. Y1 - 2008 VL - 39 IS - 2 SP - 183 EP - 218 ER - TY - JOUR A1 - Moualeu-Ngangue, Dany Pascal A1 - Weiser, Martin A1 - Ehrig, Rainald A1 - Deuflhard, Peter T1 - Optimal control for a tuberculosis model with undetected cases in Cameroon JF - Communications in Nonlinear Science and Numerical Simulation N2 - This paper considers the optimal control of tuberculosis through education, diagnosis campaign and chemoprophylaxis of latently infected. A mathematical model which includes important components such as undiagnosed infectious, diagnosed infectious, latently infected and lost-sight infectious is formulated. The model combines a frequency dependent and a density dependent force of infection for TB transmission. Through optimal control theory and numerical simulations, a cost-effective balance of two different intervention methods is obtained. Seeking to minimize the amount of money the government spends when tuberculosis remain endemic in the Cameroonian population, Pontryagin's maximum principle is used to characterize the optimal control. The optimality system is derived and solved numerically using the forward-backward sweep method (FBSM). Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods. It comes out that combining chemoprophylaxis and education, the burden of TB can be reduced by 80 % in 10 years. Y1 - 2015 U6 - https://doi.org/10.1016/j.cnsns.2014.06.037 VL - 20 IS - 3 SP - 986 EP - 1003 ER - TY - JOUR A1 - Moldenhauer, Marian A1 - Weiser, Martin A1 - Zachow, Stefan T1 - Adaptive Algorithms for Optimal Hip Implant Positioning JF - PAMM N2 - In an aging society where the number of joint replacements rises, it is important to also increase the longevity of implants. In particular hip implants have a lifetime of at most 15 years. This derives primarily from pain due to implant migration, wear, inflammation, and dislocation, which is affected by the positioning of the implant during the surgery. Current joint replacement practice uses 2D software tools and relies on the experience of surgeons. Especially the 2D tools fail to take the patients’ natural range of motion as well as stress distribution in the 3D joint induced by different daily motions into account. Optimizing the hip joint implant position for all possible parametrized motions under the constraint of a contact problem is prohibitively expensive as there are too many motions and every position change demands a recalculation of the contact problem. For the reduction of the computational effort, we use adaptive refinement on the parameter domain coupled with the interpolation method of Kriging. A coarse initial grid is to be locally refined using goal-oriented error estimation, reducing locally high variances. This approach will be combined with multi-grid optimization such that numerical errors are reduced. Y1 - 2017 U6 - https://doi.org/10.1002/pamm.201710071 VL - 17 IS - 1 SP - 203 EP - 204 ER - TY - JOUR A1 - Fischer, Lisa A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - Lossy data compression reduces communication time in hybrid time-parallel integrators JF - Comput. Vis. Sci. N2 - Parallel in time methods for solving initial value problems are a means to increase the parallelism of numerical simulations. Hybrid parareal schemes interleaving the parallel in time iteration with an iterative solution of the individual time steps are among the most efficient methods for general nonlinear problems. Despite the hiding of communication time behind computation, communication has in certain situations a significant impact on the total runtime. Here we present strict, yet no sharp, error bounds for hybrid parareal methods with inexact communication due to lossy data compression, and derive theoretical estimates of the impact of compression on parallel efficiency of the algorithms. These and some computational experiments suggest that compression is a viable method to make hybrid parareal schemes robust with respect to low bandwidth setups. Y1 - 2018 U6 - https://doi.org/10.1007/s00791-018-0293-2 VL - 19 IS - 1 SP - 19 EP - 30 ER - TY - JOUR A1 - Weiser, Martin T1 - Faster SDC convergence on non-equidistant grids by DIRK sweeps JF - BIT Numerical Mathematics N2 - Spectral deferred correction methods for solving stiff ODEs are known to converge rapidly towards the collocation limit solution on equidistant grids, but show a much less favourable contraction on non-equidistant grids such as Radau-IIa points. We interprete SDC methods as fixed point iterations for the collocation system and propose new DIRK-type sweeps for stiff problems based on purely linear algebraic considerations. Good convergence is recovered also on non-equidistant grids. The properties of different variants are explored on a couple of numerical examples. Y1 - 2015 U6 - https://doi.org/10.1007/s10543-014-0540-y VL - 55 IS - 4 SP - 1219 EP - 1241 ER - TY - JOUR A1 - Weiser, Martin A1 - Götschel, Sebastian T1 - State Trajectory Compression for Optimal Control with Parabolic PDEs JF - SIAM J. Sci. Comput. N2 - In optimal control problems with nonlinear time-dependent 3D PDEs, full 4D discretizations are usually prohibitive due to the storage requirement. For this reason gradient and quasi-Newton methods working on the reduced functional are often employed. The computation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. The state enters into the adjoint equation, again requiring the storage of a full 4D data set. We propose a lossy compression algorithm using an inexact but cheap predictor for the state data, with additional entropy coding of prediction errors. As the data is used inside a discretized, iterative algorithm, lossy coding maintaining an error bound is sufficient. Y1 - 2012 U6 - https://doi.org/10.1137/11082172X VL - 34 IS - 1 SP - A161 EP - A184 ER - TY - JOUR A1 - Weiser, Martin A1 - Röllig, Mathias A1 - Arndt, Ralf A1 - Erdmann, Bodo T1 - Development and test of a numerical model for pulse thermography in civil engineering JF - Heat and Mass Transfer N2 - Pulse thermography of concrete structures is used in civil engineering for detecting voids, honeycombing and delamination. The physical situation is readily modeled by Fourier's law. Despite the simplicity of the PDE structure, quantitatively realistic numerical 3D simulation faces two major obstacles. First, the short heating pulse induces a thin boundary layer at the heated surface which encapsulates all information and therefore has to be resolved faithfully. Even with adaptive mesh refinement techniques, obtaining useful accuracies requires an unsatisfactorily fine discretization. Second, bulk material parameters and boundary conditions are barely known exactly. We address both issues by a semi-analytic reformulation of the heat transport problem and by parameter identification. Numerical results are compared with measurements of test specimens. Y1 - 2010 VL - 46 IS - 11-12 SP - 1419 EP - 1428 ER - TY - JOUR A1 - Wilhelms, Mathias A1 - Seemann, Gunnar A1 - Weiser, Martin A1 - Dössel, Olaf T1 - Benchmarking Solvers of the Monodomain Equation in Cardiac Electrophysiological Modeling JF - Biomed. Engineer. Y1 - 2010 U6 - https://doi.org/10.1515/BMT.2010.712 VL - 55 SP - 99 EP - 102 ER - TY - JOUR A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - State Trajectory Compression in Optimal Control JF - PAMM N2 - In optimal control problems with nonlinear time-dependent 3D PDEs, the computation of the reduced gradient by adjoint methods requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. Since the state enters into the adjoint equation, the storage of a 4D discretization is necessary. We propose a lossy compression algorithm using a cheap predictor for the state data, with additional entropy coding of prediction errors. Analytical and numerical results indicate that compression factors around 30 can be obtained without exceeding the FE discretization error. Y1 - 2010 U6 - https://doi.org/10.1002/pamm.201010282 VL - 10 IS - 1 SP - 579 EP - 580 ER - TY - JOUR A1 - Günther, Andreas A1 - Lamecker, Hans A1 - Weiser, Martin T1 - Flexible Shape Matching with Finite Element Based LDDMM JF - International Journal of Computer Vision N2 - We consider Large Deformation Diffeomorphic Metric Mapping of general $m$-currents. After stating an optimization algorithm in the function space of admissable morph generating velocity fields, two innovative aspects in this framework are presented and numerically investigated: First, we spatially discretize the velocity field with conforming adaptive finite elements and discuss advantages of this new approach. Second, we directly compute the temporal evolution of discrete $m$-current attributes. Y1 - 2013 U6 - https://doi.org/10.1007/s11263-012-0599-3 VL - 105 IS - 2 SP - 128 EP - 143 ER - TY - JOUR A1 - Weiser, Martin T1 - On goal-oriented adaptivity for elliptic optimal control problems JF - Opt. Meth. Softw. N2 - The paper proposes goal-oriented error estimation and mesh refinement for optimal control problems with elliptic PDE constraints using the value of the reduced cost functional as quantity of interest. Error representation, hierarchical error estimators, and greedy-style error indicators are derived and compared to their counterparts when using the all-at-once cost functional as quantity of interest. Finally, the efficiency of the error estimator and generated meshes are demonstrated on numerical examples. Y1 - 2013 VL - 28 IS - 13 SP - 969 EP - 992 ER - TY - JOUR A1 - Deuflhard, Peter A1 - Schiela, Anton A1 - Weiser, Martin T1 - Mathematical Cancer Therapy Planning in Deep Regional Hyperthermia JF - Acta Numerica N2 - This paper surveys the required mathematics for a typical challenging problem from computational medicine, the cancer therapy planning in deep regional hyperthermia. In the course of many years of close cooperation with clinics, the medical problem gave rise to quite a number of subtle mathematical problems, part of which had been unsolved when the common project started. Efficiency of numerical algorithms, i.e. computational speed and monitored reliability, play a decisive role for the medical treatment. Off-the-shelf software had turned out to be not sufficient to meet the requirements of medicine. Rather, new mathematical theory as well as new numerical algorithms had to be developed. In order to make our algorithms useful in the clinical environment, new visualization software, a virtual lab, including 3D geometry processing of individual virtual patients had to be designed and implemented. Moreover, before the problems could be attacked by numerical algorithms, careful mathematical modelling had to be done. Finally, parameter identification and constrained optimization for the PDEs had to be newly analyzed and realized over the individual patient's geometry. Our new techniques had an impact on the specificity of the individual patients' treatment and on the construction of an improved hyperthermia applicator. Y1 - 2012 VL - 21 SP - 307 EP - 378 ER - TY - JOUR A1 - Lubkoll, Lars A1 - Schiela, Anton A1 - Weiser, Martin T1 - An optimal control problem in polyconvex hyperelasticity JF - SIAM J. Control Opt. N2 - We consider a shape implant design problem that arises in the context of facial surgery. We introduce a reformulation as an optimal control problem, where the control acts as a boundary force. The state is modelled as a minimizer of a polyconvex hyperelastic energy functional. We show existence of optimal solutions and derive - on a formal level - first order optimality conditions. Finally, preliminary numerical results are presented. Y1 - 2014 U6 - https://doi.org/10.1137/120876629 VL - 52 IS - 3 SP - 1403 EP - 1422 ER - TY - JOUR A1 - Lubkoll, Lars A1 - Schiela, Anton A1 - Weiser, Martin T1 - An affine covariant composite step method for optimization with PDEs as equality constraints JF - Optimization Methods and Software N2 - We propose a composite step method, designed for equality constrained optimization with partial differential equations. Focus is laid on the construction of a globalization scheme, which is based on cubic regularization of the objective and an affine covariant damped Newton method for feasibility. We show finite termination of the inner loop and fast local convergence of the algorithm. We discuss preconditioning strategies for the iterative solution of the arising linear systems with projected conjugate gradient. Numerical results are shown for optimal control problems subject to a nonlinear heat equation and subject to nonlinear elastic equations arising from an implant design problem in craniofacial surgery. Y1 - 2017 U6 - https://doi.org/10.1080/10556788.2016.1241783 VL - 32 IS - 5 SP - 1132 EP - 1161 ER - TY - JOUR A1 - Powell, Gary A1 - Weiser, Martin T1 - Views, A new form of container adaptors JF - C/C++ Users Journal N2 - The C++ standard template library has many useful containers for data. The standard library includes two adpators, queue, and stack. The authors have extended this model along the lines of relational database semantics. Sometimes the analogy is striking, and we will point it out occasionally. An adaptor allows the standard algorithms to be used on a subset or modification of the data without having to copy the data elements into a new container. The authors provide many useful adaptors which can be used together to produce interesting views of data in a container. Y1 - 2000 VL - 18 IS - 4 SP - 40 EP - 51 ER - TY - JOUR A1 - Tierney, Nicholas J. A1 - Mira, Antonietta A1 - Reinhold, J. Jost A1 - Weiser, Martin A1 - Burkart, Roman A1 - Benvenuti, Claudio A1 - Auricchio, Angelo T1 - Novel relocation methods for automatic external defibrillator improve out-of-hospital cardiac arrest coverage under limited resources JF - Resuscitation N2 - Background Mathematical optimisation models have recently been applied to identify ideal Automatic External Defibrillator (AED) locations that maximise coverage of Out of Hospital Cardiac Arrest (OHCA). However, these fixed location models cannot relocate existing AEDs in a flexible way, and have nearly exclusively been applied to urban regions. We developed a flexible location model for AEDs, compared its performance to existing fixed location and population models, and explored how these perform across urban and rural regions. Methods Optimisation techniques were applied to AED deployment and OHCA coverage was assessed. A total of 2802 geolocated OHCAs occurred in Canton Ticino, Switzerland, from January 1st 2005 to December 31st 2015. Results There were 719 AEDs in Canton Ticino. 635 (23%) OHCA events occurred within 100m of an AED, with 306 (31%) in urban, and 329 (18%) in rural areas. Median distance from OHCA events to the nearest AED was 224m (168m urban vs. 269m rural). Flexible location models performed better than fixed location and population models, with the cost to deploy 20 new AEDs instead relocating 171 existing AEDs to new locations, improving OHCA coverage to 38%, compared to 26% using fixed models, and 24% with the population based model. Conclusions Optimisation models for AEDs placement are superior to population models and should be strongly considered by communities when selecting areas for AED deployment. Compared to other models, flexible location models increase overall OHCA coverage, and decreases the distance to nearby AEDs, even in rural areas, while saving significant financial resources. Y1 - 2018 U6 - https://doi.org/10.1016/j.resuscitation.2018.01.055 IS - 125 SP - 83 EP - 89 ER - TY - JOUR A1 - Weiser, Martin A1 - Erdmann, Bodo A1 - Schenkl, Sebastian A1 - Muggenthaler, Holger A1 - Hubig, Michael A1 - Mall, Gita A1 - Zachow, Stefan T1 - Uncertainty in Temperature-Based Determination of Time of Death JF - Heat and Mass Transfer N2 - Temperature-based estimation of time of death (ToD) can be per- formed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer mod- els. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We in- vestigate the impact of parameter variations and geometry representation on the estimated ToD based on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed to- mography (CT) data set, differentiating various organs and tissue types. Y1 - 2018 U6 - https://doi.org/10.1007/s00231-018-2324-4 VL - 54 IS - 9 SP - 2815 EP - 2826 PB - Springer ER - TY - JOUR A1 - Weiser, Martin A1 - Ghosh, Sunayana T1 - Theoretically optimal inexact SDC methods JF - Communications in Applied Mathematics and Computational Science N2 - In several inital value problems with particularly expensive right hand side evaluation or implicit step computation, there is a trade-off between accuracy and computational effort. We consider inexact spectral deferred correction (SDC) methods for solving such initial value problems. SDC methods are interpreted as fixed point iterations and, due to their corrective iterative nature, allow to exploit the accuracy-work-tradeoff for a reduction of the total computational effort. On one hand we derive error models bounding the total error in terms of the evaluation errors. On the other hand, we define work models describing the computational effort in terms of the evaluation accuracy. Combining both, a theoretically optimal local tolerance selection is worked out by minimizing the total work subject to achieving the requested tolerance. The properties of optimal local tolerances and the predicted efficiency gain compared to simpler heuristics, and a reasonable practical performance, are illustrated on simple numerical examples. Y1 - 2018 U6 - https://doi.org/10.2140/camcos.2018.13.53 IS - 13-1 SP - 53 EP - 86 ER - TY - JOUR A1 - Weiser, Martin A1 - Schiela, Anton T1 - Function space interior point methods for PDE constrained optimization JF - PAMM Y1 - 2004 VL - 4 IS - 1 SP - 43 EP - 46 ER - TY - JOUR A1 - Volkwein, S. A1 - Weiser, Martin T1 - Affine Invariant Convergence Analysis for Inexact Augmented Lagrangian SQP Methods JF - SIAM J. Control Optim. Y1 - 2002 VL - 41 IS - 3 SP - 875 EP - 899 ER - TY - JOUR A1 - Weiser, Martin A1 - Gänzler, Tobias A1 - Schiela, Anton T1 - A control reduced primal interior point method for a class of control constrained optimal control problems JF - Comput. Optim. Appl. Y1 - 2007 VL - 41 IS - 1 SP - 127 EP - 145 ER - TY - JOUR A1 - Weiser, Martin A1 - Schiela, Anton A1 - Deuflhard, Peter T1 - Asymptotic Mesh Independence of Newton’s Method Revisited JF - SIAM J. Num. Anal. Y1 - 2005 VL - 42 IS - 5 SP - 1830 EP - 1845 ER - TY - JOUR A1 - Weiser, Martin T1 - Optimization and Identification in Regional Hyperthermia JF - Int. J. Appl. Electromagn. and Mech. Y1 - 2009 VL - 30 SP - 265 EP - 275 ER - TY - JOUR A1 - Weiser, Martin T1 - Pointwise Nonlinear Scaling for Reaction-Diffusion Equations JF - Appl. Num. Math. Y1 - 2009 VL - 59 IS - 8 SP - 1858 EP - 1869 ER - TY - JOUR A1 - Weiser, Martin A1 - Deuflhard, Peter A1 - Erdmann, Bodo T1 - Affine conjugate adaptive Newton methods for nonlinear elastomechanics JF - Opt. Meth. Softw. Y1 - 2007 VL - 22 IS - 3 SP - 413 EP - 431 ER - TY - JOUR A1 - Weihrauch, Mirko A1 - Wust, Peter A1 - Weiser, Martin A1 - Nadobny, Johanna A1 - Eisenhardt, Steffen A1 - Budach, Volker A1 - Gellermann, Johanna T1 - Adaptation of antenna profiles for control of MR guided hyperthermia (HT) in a hybrid MR-HT system JF - Medical Physics Y1 - 2007 VL - 34 IS - 12 SP - 4717 EP - 4725 ER - TY - JOUR A1 - Weiser, Martin T1 - Interior point methods in function space JF - SIAM J. Control Optimization Y1 - 2005 VL - 44 IS - 5 SP - 1766 EP - 1786 ER - TY - JOUR A1 - Schenkl, Sebastian A1 - Muggenthaler, Holger A1 - Hubig, Michael A1 - Erdmann, Bodo A1 - Weiser, Martin A1 - Zachow, Stefan A1 - Heinrich, Andreas A1 - Güttler, Felix Victor A1 - Teichgräber, Ulf A1 - Mall, Gita T1 - Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis JF - International Journal of Legal Medicine N2 - Temperature based death time estimation is based either on simple phenomenological models of corpse cooling or on detailed physical heat transfer models. The latter are much more complex, but allow a higher accuracy of death time estimation as in principle all relevant cooling mechanisms can be taken into account. Here, a complete work flow for finite element based cooling simulation models is presented. The following steps are demonstrated on CT-phantoms: • CT-scan • Segmentation of the CT images for thermodynamically relevant features of individual geometries • Conversion of the segmentation result into a Finite Element (FE) simulation model • Computation of the model cooling curve • Calculation of the cooling time For the first time in FE-based cooling time estimation the steps from the CT image over segmentation to FE model generation are semi-automatically performed. The cooling time calculation results are compared to cooling measurements performed on the phantoms under controlled conditions. In this context, the method is validated using different CTphantoms. Some of the CT phantoms thermodynamic material parameters had to be experimentally determined via independent experiments. Moreover the impact of geometry and material parameter uncertainties on the estimated cooling time is investigated by a sensitivity analysis. KW - temperature based death time estimation KW - finite element method KW - CT segmentation KW - sensitivity analysis Y1 - 2017 U6 - https://doi.org/doi:10.1007/s00414-016-1523-0 VL - 131 IS - 3 SP - 699 EP - 712 ER - TY - JOUR A1 - Weiser, Martin A1 - Zachow, Stefan A1 - Deuflhard, Peter T1 - Craniofacial Surgery Planning Based on Virtual Patient Models JF - it - Information Technology Y1 - 2010 U6 - https://doi.org/10.1524/itit.2010.0600 VL - 52 IS - 5 SP - 258 EP - 263 PB - Oldenbourg Verlagsgruppe ER - TY - JOUR A1 - Götschel, Sebastian A1 - Nagaiah, Chamakuri A1 - Kunisch, Karl A1 - Weiser, Martin T1 - Lossy Compression in Optimal Control of Cardiac Defibrillation JF - J. Sci. Comput. N2 - This paper presents efficient computational techniques for solving an optimization problem in cardiac defibrillation governed by the monodomain equations. Time-dependent electrical currents injected at different spatial positions act as the control. Inexact Newton-CG methods are used, with reduced gradient computation by adjoint solves. In order to reduce the computational complexity, adaptive mesh refinement for state and adjoint equations is performed. To reduce the high storage and bandwidth demand imposed by adjoint gradient and Hessian-vector evaluations, a lossy compression technique for storing trajectory data is applied. An adaptive choice of quantization tolerance based on error estimates is developed in order to ensure convergence. The efficiency of the proposed approach is demonstrated on numerical examples. Y1 - 2014 U6 - https://doi.org/10.1007/s10915-013-9785-x VL - 60 IS - 1 SP - 35 EP - 59 ER - TY - JOUR A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - Lossy Compression for PDE-constrained Optimization: Adaptive Error Control JF - Comput. Optim. Appl. N2 - For the solution of optimal control problems governed by nonlinear parabolic PDEs, methods working on the reduced objective functional are often employed to avoid a full spatio-temporal discretization of the problem. The evaluation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the ad-joint equation. The state enters into the adjoint equation, requiring the storage of a full 4D data set. If Newton-CG methods are used, two additional trajectories have to be stored. To get numerical results which are accurate enough, in many case very fine discretizations in time and space are necessary, which leads to a significant amount of data to be stored and transmitted to mass storage. Lossy compression methods were developed to overcome the storage problem by reducing the accuracy of the stored trajectories. The inexact data induces errors in the reduced gradient and reduced Hessian. In this paper, we analyze the influence of such a lossy trajectory compression method on Newton-CG methods for optimal control of parabolic PDEs and design an adaptive strategy for choosing appropriate quantization tolerances. Y1 - 2015 VL - 62 IS - 1 SP - 131 EP - 155 PB - Springer ER - TY - JOUR A1 - Götschel, Sebastian A1 - Weiser, Martin A1 - Maierhofer, Christiane A1 - Richter, Regina A1 - Röllig, Mathias T1 - Fast Defect Shape Reconstruction Based on the Travel Time in Pulse Thermography JF - Nondestructive Testing of Materials and Structures Y1 - 2013 VL - 6 SP - 83 EP - 89 ER - TY - JOUR A1 - Weiser, Martin A1 - Freytag, Yvonne A1 - Erdmann, Bodo A1 - Hubig, Michael A1 - Mall, Gita T1 - Optimal Design of Experiments for Estimating the Time of Death in Forensic Medicine JF - Inverse Problems N2 - Estimation of time of death based on a single measurement of body core temperature is a standard procedure in forensic medicine. Mechanistic models using simulation of heat transport promise higher accuracy than established phenomenological models in particular in nonstandard situations, but involve many not exactly known physical parameters. Identifying both time of death and physical parameters from multiple temperature measurements is one possibility to reduce the uncertainty significantly. In this paper, we consider the inverse problem in a Bayesian setting and perform both local and sampling-based uncertainty quantification, where proper orthogonal decomposition is used as model reduction for fast solution of the forward model. Based on the local uncertainty quantification, optimal design of experiments is performed in order to minimize the uncertainty in the time of death estimate for a given number of measurements. For reasons of practicability, temperature acquisition points are selected from a set of candidates in different spatial and temporal locations. Applied to a real corpse model, a significant accuracy improvement is obtained already with a small number of measurements. Y1 - 2018 U6 - https://doi.org/10.1088/1361-6420/aae7a5 VL - 34 IS - 12 SP - 125005 ER - TY - JOUR A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - Compression Challenges in Large Scale Partial Differential Equation Solvers JF - Algorithms N2 - Solvers for partial differential equations (PDEs) are one of the cornerstones of computational science. For large problems, they involve huge amounts of data that need to be stored and transmitted on all levels of the memory hierarchy. Often, bandwidth is the limiting factor due to the relatively small arithmetic intensity, and increasingly due to the growing disparity between computing power and bandwidth. Consequently, data compression techniques have been investigated and tailored towards the specific requirements of PDE solvers over the recent decades. This paper surveys data compression challenges and discusses examples of corresponding solution approaches for PDE problems, covering all levels of the memory hierarchy from mass storage up to the main memory. We illustrate concepts for particular methods, with examples, and give references to alternatives. Y1 - 2019 U6 - https://doi.org/10.3390/a12090197 VL - 12 IS - 9 SP - 197 ER - TY - JOUR A1 - Götschel, Sebastian A1 - Schiela, Anton A1 - Weiser, Martin T1 - Kaskade 7 - a Flexible Finite Element Toolbox JF - Computers and Mathematics with Applications N2 - Kaskade 7 is a finite element toolbox for the solution of stationary or transient systems of partial differential equations, aimed at supporting application-oriented research in numerical analysis and scientific computing. The library is written in C++ and is based on the \textsc{Dune} interface. The code is independent of spatial dimension and works with different grid managers. An important feature is the mix-and-match approach to discretizing systems of PDEs with different ansatz and test spaces for all variables. We describe the mathematical concepts behind the library as well as its structure, illustrating its use at several examples on the way. Y1 - 2021 U6 - https://doi.org/10.1016/j.camwa.2020.02.011 VL - 81 SP - 444 EP - 458 ER - TY - JOUR A1 - Alhaddad, Samer A1 - Förstner, Jens A1 - Groth, Stefan A1 - Grünewald, Daniel A1 - Grynko, Yevgen A1 - Hannig, Frank A1 - Kenter, Tobias A1 - Pfreundt, F.J. A1 - Plessl, Christian A1 - Schotte, Merlind A1 - Steinke, Thomas A1 - Teich, J. A1 - Weiser, Martin A1 - Wende, Florian T1 - The HighPerMeshes Framework for Numerical Algorithms on Unstructured Grids JF - Concurrency and Computation: Practice and Experience N2 - Solving PDEs on unstructured grids is a cornerstone of engineering and scientific computing. Heterogeneous parallel platforms, including CPUs, GPUs, and FPGAs, enable energy-efficient and computationally demanding simulations. In this article, we introduce the HPM C++-embedded DSL that bridges the abstraction gap between the mathematical formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different programming models on the other hand. Thus, the HPM DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HPM DSL, and demonstrate its usage with three examples. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters, is presented. A code generator and a matching back end allow the acceleration of HPM code with GPUs. Finally, the achievable performance and scalability are demonstrated for different example problems. Y1 - 2022 U6 - https://doi.org/10.1002/cpe.6616 VL - 34 IS - 14 ER - TY - JOUR A1 - Alhaddad, Samer A1 - Förstner, Jens A1 - Groth, Stefan A1 - Grünewald, Daniel A1 - Grynko, Yevgen A1 - Hannig, Frank A1 - Kenter, Tobias A1 - Pfreundt, Franz-Josef A1 - Plessl, Christian A1 - Schotte, Merlind A1 - Steinke, Thomas A1 - Teich, Jürgen A1 - Weiser, Martin A1 - Wende, Florian T1 - HighPerMeshes - A Domain-Specific Language for Numerical Algorithms on Unstructured Grids JF - Euro-Par 2020: Parallel Processing Workshops. N2 - Solving partial differential equations on unstructured grids is a cornerstone of engineering and scientific computing. Nowadays, heterogeneous parallel platforms with CPUs, GPUs, and FPGAs enable energy-efficient and computationally demanding simulations. We developed the HighPerMeshes C++-embedded Domain-Specific Language (DSL) for bridging the abstraction gap between the mathematical and algorithmic formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different parallel programming and runtime models on the other hand. Thus, the HighPerMeshes DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HighPer-Meshes DSL, and demonstrate its usage with three examples, a Poisson and monodomain problem, respectively, solved by the continuous finite element method, and the discontinuous Galerkin method for Maxwell’s equation. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters is presented. Finally, the achievable performance and scalability are demonstrated for a typical example problem on a multi-core CPU cluster. Y1 - 2021 U6 - https://doi.org/10.1007/978-3-030-71593-9_15 SP - 185 EP - 196 PB - Springer ER - TY - JOUR A1 - Chegini, Fatemeh A1 - Kopanicakova, Alena A1 - Krause, Rolf A1 - Weiser, Martin T1 - Efficient Identification of Scars using Heterogeneous Model Hierarchies JF - EP Europace N2 - Aims. Detection and quantification of myocardial scars are helpful both for diagnosis of heart diseases and for building personalized simulation models. Scar tissue is generally charac­terized by a different conduction of electrical excitation. We aim at estimating conductivity-related parameters from endocardial mapping data, in particular the conductivity tensor. Solving this inverse problem requires computationally expensive monodomain simulations on fine discretizations. Therefore, we aim at accelerating the estimation using a multilevel method combining electrophysiology models of different complexity, namely the mono­domain and the eikonal model. Methods. Distributed parameter estimation is performed by minimizing the misfit between simulated and measured electrical activity on the endocardial surface, subject to the mono­domain model and regularization, leading to a constrained optimization problem. We formulate this optimization problem, including the modeling of scar tissue and different regularizations, and design an efficient iterative solver. We consider monodomain grid hierarchies and monodomain-eikonal model hierarchies in a recursive multilevel trust-region method. Results. From several numerical examples, both the efficiency of the method and the estimation quality, depending on the data, are investigated. The multilevel solver is significantly faster than a comparable single level solver. Endocardial mapping data of realistic density appears to be just sufficient to provide quantitatively reasonable estimates of location, size, and shape of scars close to the endocardial surface. Conclusion. In several situations, scar reconstruction based on eikonal and monodomain models differ significantly, suggesting the use of the more accurate but more expensive monodomain model for this purpose. Still, eikonal models can be utilized to accelerate the computations considerably, enabling the use of complex electrophysiology models for estimating myocardial scars from endocardial mapping data. Y1 - 2021 U6 - https://doi.org/10.1093/europace/euaa402 VL - 23 SP - i113 EP - i122 ER - TY - JOUR A1 - Carderera, Alejandro A1 - Pokutta, Sebastian A1 - Schütte, Christof A1 - Weiser, Martin T1 - CINDy: Conditional gradient-based Identification of Non-linear Dynamics – Noise-robust recovery JF - Journal of Computational and Applied Mathematics N2 - Governing equations are essential to the study of nonlinear dynamics, often enabling the prediction of previously unseen behaviors as well as the inclusion into control strategies. The discovery of governing equations from data thus has the potential to transform data-rich fields where well-established dynamical models remain unknown. This work contributes to the recent trend in data-driven sparse identification of nonlinear dynamics of finding the best sparse fit to observational data in a large library of potential nonlinear models. We propose an efficient first-order Conditional Gradient algorithm for solving the underlying optimization problem. In comparison to the most prominent alternative algorithms, the new algorithm shows significantly improved performance on several essential issues like sparsity-induction, structure-preservation, noise robustness, and sample efficiency. We demonstrate these advantages on several dynamics from the field of synchronization, particle dynamics, and enzyme chemistry. Y1 - 2021 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - Error Bounds for Discrete-Continuous Free Flight Trajectory Optimization JF - Journal of Optimization Theory and Applications N2 - Flight planning, the computation of optimal routes in view of flight time and fuel consumption under given weather conditions, is traditionally done by finding globally shortest paths in a predefined airway network. Free flight trajectories, not restricted to a network, have the potential to reduce the costs significantly, and can be computed using locally convergent continuous optimal control methods. Hybrid methods that start with a discrete global search and refine with a fast continuous local optimization combine the best properties of both approaches, but rely on a good switchover, which requires error estimates for discrete paths relative to continuous trajectories. Based on vertex density and local complete connectivity, we derive localized and a priori bounds for the flight time of discrete paths relative to the optimal continuous trajectory, and illustrate their properties on a set of benchmark problems. It turns out that localization improves the error bound by four orders of magnitude, but still leaves ample opportunities for tighter bounds using a posteriori error estimators. Y1 - 2023 U6 - https://doi.org/10.1007/s10957-023-02264-7 VL - 198 SP - 830 EP - 856 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - Newton's Method for Global Free Flight Trajectory Optimization JF - Operations Research Forum N2 - Globally optimal free flight trajectory optimization can be achieved with a combination of discrete and continuous optimization. A key requirement is that Newton's method for continuous optimization converges in a sufficiently large neighborhood around a minimizer. We show in this paper that, under certain assumptions, this is the case. Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-91846 VL - 4 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - A Discrete-Continuous Algorithm for Free Flight Planning JF - Algorithms N2 - We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach. KW - shortest path KW - flight planning KW - free flight KW - discrete-continuous algorithm KW - optimal control KW - discrete optimization Y1 - 2020 U6 - https://doi.org/10.3390/a14010004 SN - 1438-0064 VL - 14 IS - 1 SP - 4 PB - MDPI ER - TY - JOUR A1 - Huynh, Ngoc A1 - Chegini, Fatemeh A1 - Pavarino, Luca A1 - Weiser, Martin A1 - Scacchi, Simone T1 - Convergence analysis of BDDC preconditioners for hybrid DG discretizations of the cardiac cell-by-cell model JF - SIAM Journal on Scientific Computing N2 - A Balancing Domain Decomposition by Constraints (BDDC) preconditioner is constructed and analyzed for the solution of hybrid Discontinuous Galerkin discretizations of reaction-diffusion systems of ordinary and partial differential equations arising in cardiac cell-by-cell models. The latter are different from the classical Bidomain and Monodomain cardiac models based on homogenized descriptions of the cardiac tissue at the macroscopic level, and therefore they allow the representation of individual cardiac cells, cell aggregates, damaged tissues and nonuniform distributions of ion channels on the cell membrane. The resulting discrete cell-by-cell models have discontinuous global solutions across the cell boundaries, hence the proposed BDDC preconditioner is based on appropriate dual and primal spaces with additional constraints which transfer information between cells (subdomains) without influencing the overall discontinuity of the global solution. A scalable convergence rate bound is proved for the resulting BDDC cell-by-cell preconditioned operator, while numerical tests validate this bound and investigate its dependence on the discretization parameters. Y1 - 2023 VL - 45 IS - 6 SP - A2836 EP - A2857 ER - TY - JOUR A1 - Ozel, Mehmet Neset A1 - Kulkarni, Abhishek A1 - Hasan, Amr A1 - Brummer, Josephine A1 - Moldenhauer, Marian A1 - Daumann, Ilsa-Maria A1 - Wolfenberg, Heike A1 - Dercksen, Vincent J. A1 - Kiral, Ferdi Ridvan A1 - Weiser, Martin A1 - Prohaska, Steffen A1 - von Kleist, Max A1 - Hiesinger, Peter Robin T1 - Serial synapse formation through filopodial competition for synaptic seeding factors JF - Developmental Cell N2 - Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a 'serial synapse formation' model, where at any time point only a single 'synaptogenic' filopodium suppresses the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization and reduced synapse formation, which is sufficient to cause the destabilization of entire axon terminals. Our model provides a filopodial 'winner-takes-all' mechanism that ensures the formation of an appropriate number of synapses. Y1 - 2019 U6 - https://doi.org/10.1016/j.devcel.2019.06.014 VL - 50 IS - 4 SP - 447 EP - 461 ER - TY - JOUR A1 - Ranneberg, Maximilian A1 - Weiser, Martin A1 - Weihrauch, Mirko A1 - Budach, Volker A1 - Gellermann, Johanna A1 - Wust, Peter T1 - Regularized Antenna Profile Adaptation in Online Hyperthermia Treatment JF - Medical Physics Y1 - 2010 U6 - https://doi.org/10.1118/1.3488896 VL - 37 SP - 5382 EP - 5394 ER - TY - JOUR A1 - Schneck, Jakob A1 - Weiser, Martin A1 - Wende, Florian T1 - Impact of mixed precision and storage layout on additive Schwarz smoothers JF - Numerical Linear Algebra with Applications N2 - The growing discrepancy between CPU computing power and memory bandwidth drives more and more numerical algorithms into a bandwidth-bound regime. One example is the overlapping Schwarz smoother, a highly effective building block for iterative multigrid solution of elliptic equations with higher order finite elements. Two options of reducing the required memory bandwidth are sparsity exploiting storage layouts and representing matrix entries with reduced precision in floating point or fixed point format. We investigate the impact of several options on storage demand and contraction rate, both analytically in the context of subspace correction methods and numerically at an example of solid mechanics. Both perspectives agree on the favourite scheme: fixed point representation of Cholesky factors in nested dissection storage. Y1 - 2021 U6 - https://doi.org/10.1002/nla.2366 VL - 28 IS - 4 ER - TY - JOUR A1 - Schiela, Anton A1 - Stöcklein, Matthias A1 - Weiser, Martin T1 - A primal dual projection algorithm for efficient constraint preconditioning JF - SIAM Journal on Scientific Computing N2 - We consider a linear iterative solver for large scale linearly constrained quadratic minimization problems that arise, for example, in optimization with PDEs. By a primal-dual projection (PDP) iteration, which can be interpreted and analysed as a gradient method on a quotient space, the given problem can be solved by computing sulutions for a sequence of constrained surrogate problems, projections onto the feasible subspaces, and Lagrange multiplier updates. As a major application we consider a class of optimization problems with PDEs, where PDP can be applied together with a projected cg method using a block triangular constraint preconditioner. Numerical experiments show reliable and competitive performance for an optimal control problem in elasticity. Y1 - 2021 U6 - https://doi.org/10.1137/20M1380739 VL - 43 IS - 6 SP - A4095 EP - A4120 ER - TY - JOUR A1 - Horenko, Illia A1 - Weiser, Martin A1 - Schmidt, Burkhard A1 - Schütte, Christof T1 - Fully Adaptive Propagation of the Quantum-Classical Liouville Equation JF - J. Chem. Phys. Y1 - 2004 UR - http://publications.imp.fu-berlin.de/65/ U6 - https://doi.org/10.1063/1.1691015 VL - 120 IS - 19 SP - 8913 EP - 8923 ER - TY - JOUR A1 - Subramaniam, Jayant S. A1 - Hubig, Michael A1 - Muggenthaler, Holger A1 - Schenkl, Sebastian A1 - Ullrich, Julia A1 - Pourtier, Grégroire A1 - Weiser, Martin A1 - Mall, Gita T1 - Sensitivity of temperature-based time since death estimation on measurement location JF - International Journal of Legal Medicine N2 - Rectal temperature measurement (RTM) from crime scenes is an important parameter for temperature-based time of death estimation (TDE). Various influential variables exist in TDE methods like the uncertainty in thermal and environmental parameters. Although RTM depends in particular on the location of measurement position, this relationship has never been investigated separately. The presented study fills this gap using Finite Element (FE) simulations of body cooling. A manually meshed coarse human FE model and an FE geometry model developed from the CT scan of a male corpse are used for TDE sensitivity analysis. The coarse model is considered with and without a support structure of moist soil. As there is no clear definition of ideal rectal temperature measurement location for TDE, possible variations in RTM location (RTML) are considered based on anatomy and forensic practice. The maximum variation of TDE caused by RTML changes is investigated via FE simulation. Moreover, the influence of ambient temperature, of FE model change and of the models positioning on a wet soil underground are also discussed. As a general outcome, we notice that maximum TDE deviations of up to ca. 2-3 h due to RTML deviations have to be expected. The direction of maximum influence of RTML change on TDE generally was on the line caudal to cranial. Y1 - 2023 U6 - https://doi.org/10.1007/s00414-023-03040-y VL - 137 SP - 1815 EP - 1837 ER - TY - JOUR A1 - Ullrich, Julia A1 - Weiser, Martin A1 - Subramaniam, Jayant A1 - Schenkl, Sebastian A1 - Muggenthaler, Holger A1 - Hubig, Michael A1 - Mall, Gita T1 - The impact of anatomy variation on temperature based time of death estimation JF - International Journal of Legal Medicine N2 - Temperature-based time of death estimation (TTDE) using simulation methods such as the finite element (FE) method promises higher accuracy and broader applicability in nonstandard cooling scenarios than established phenomenological methods. Their accuracy depends crucially on the simulation model to capture the actual situation. The model fidelity in turn hinges on the representation of the corpse’s anatomy in form of computational meshes as well as on the thermodynamic parameters. While inaccuracies in anatomy representation due to coarse mesh resolution are known to have a minor impact on the estimated time of death, the sensitivity with respect to larger differences in the anatomy has so far not been studied. We assess this sensitivity by comparing four independently generated and vastly different anatomical models in terms of the estimated time of death in an identical cooling scenario. In order to isolate the impact of shape variation, the models are scaled to a reference size, and the possible impact of measurement location variation is excluded explicitly, which gives a lower bound on the impact of anatomy on the estimated time of death. Y1 - 2023 U6 - https://doi.org/10.1007/s00414-023-03026-w VL - 137 SP - 1615 EP - 1627 ER - TY - JOUR A1 - Bartels, Tinko A1 - Fisikopoulos, Vissarion A1 - Weiser, Martin T1 - Fast Floating-Point Filters for Robust Predicates JF - BIT Numerical Mathematics N2 - Geometric predicates are at the core of many algorithms, such as the construction of Delaunay triangulations, mesh processing and spatial relation tests. These algorithms have applications in scientific computing, geographic information systems and computer-aided design. With floating-point arithmetic, these geometric predicates can incur round-off errors that may lead to incorrect results and inconsistencies, causing computations to fail. This issue has been addressed using a combination of exact arithmetic for robustness and floating-point filters to mitigate the computational cost of exact computations. The implementation of exact computations and floating-point filters can be a difficult task, and code generation tools have been proposed to address this. We present a new C++ meta-programming framework for the generation of fast, robust predicates for arbitrary geometric predicates based on polynomial expressions. We combine and extend different approaches to filtering, branch reduction, and overflow avoidance that have previously been proposed. We show examples of how this approach produces correct results for data sets that could lead to incorrect predicate results with naive implementations. Our benchmark results demonstrate that our implementation surpasses state-of-the-art implementations. Y1 - 2023 U6 - https://doi.org/10.1007/s10543-023-00975-x VL - 63 ER - TY - JOUR A1 - Niemann, Jan-Hendrik A1 - Uram, Samuel A1 - Wolf, Sarah A1 - Conrad, Natasa Djurdjevac A1 - Weiser, Martin T1 - Multilevel Optimization for Policy Design with Agent-Based Epidemic Models JF - Computational Science N2 - Epidemiological models can not only be used to forecast the course of a pandemic like COVID-19, but also to propose and design non-pharmaceutical interventions such as school and work closing. In general, the design of optimal policies leads to nonlinear optimization problems that can be solved by numerical algorithms. Epidemiological models come in different complexities, ranging from systems of simple ordinary differential equations (ODEs) to complex agent-based models (ABMs). The former allow a fast and straightforward optimization, but are limited in accuracy, detail, and parameterization, while the latter can resolve spreading processes in detail, but are extremely expensive to optimize. We consider policy optimization in a prototypical situation modeled as both ODE and ABM, review numerical optimization approaches, and propose a heterogeneous multilevel approach based on combining a fine-resolution ABM and a coarse ODE model. Numerical experiments, in particular with respect to convergence speed, are given for illustrative examples. Y1 - 2024 U6 - https://doi.org/10.1016/j.jocs.2024.102242 VL - 77 SP - 102242 ER - TY - JOUR A1 - Semler, Phillip A1 - Weiser, Martin T1 - Adaptive Gaussian Process Regression for Efficient Building of Surrogate Models in Inverse Problems JF - Inverse Problems N2 - In a task where many similar inverse problems must be solved, evaluating costly simulations is impractical. Therefore, replacing the model y with a surrogate model y(s) that can be evaluated quickly leads to a significant speedup. The approximation quality of the surrogate model depends strongly on the number, position, and accuracy of the sample points. With an additional finite computational budget, this leads to a problem of (computer) experimental design. In contrast to the selection of sample points, the trade-off between accuracy and effort has hardly been studied systematically. We therefore propose an adaptive algorithm to find an optimal design in terms of position and accuracy. Pursuing a sequential design by incrementally appending the computational budget leads to a convex and constrained optimization problem. As a surrogate, we construct a Gaussian process regression model. We measure the global approximation error in terms of its impact on the accuracy of the identified parameter and aim for a uniform absolute tolerance, assuming that y(s) is computed by finite element calculations. A priori error estimates and a coarse estimate of computational effort relate the expected improvement of the surrogate model error to computational effort, resulting in the most efficient combination of sample point and evaluation tolerance. We also allow for improving the accuracy of already existing sample points by continuing previously truncated finite element solution procedures. Y1 - 2023 U6 - https://doi.org/10.1088/1361-6420/ad0028 VL - 39 IS - 12 SP - 125003 ER -