TY - GEN A1 - Götschel, Sebastian A1 - Weiser, Martin A1 - Schiela, Anton T1 - Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox N2 - This paper presents concepts and implementation of the finite element toolbox Kaskade 7, a flexible C++ code for solving elliptic and parabolic PDE systems. Issues such as problem formulation, assembly and adaptivity are discussed at the example of optimal control problems. Trajectory compression for parabolic optimization problems is considered as a case study. T3 - ZIB-Report - 10-25 KW - partial differential equations KW - optimal control KW - finite elements KW - generic programming KW - adaptive methods Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11909 SN - 1438-0064 ER - TY - GEN A1 - Lubkoll, Lars A1 - Schiela, Anton A1 - Weiser, Martin T1 - An optimal control problem in polyconvex hyperelasticity N2 - We consider a shape implant design problem that arises in the context of facial surgery. We introduce a reformulation as an optimal control problem, where the control acts as a boundary force. The state is modelled as a minimizer of a polyconvex hyperelastic energy functional. We show existence of optimal solutions and derive - on a formal level - first order optimality conditions. Finally, preliminary numerical results are presented. T3 - ZIB-Report - 12-08 KW - polyconvex elasticity KW - implant design KW - optimal control Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14745 SN - 1438-0064 ER - TY - GEN A1 - Götschel, Sebastian A1 - von Tycowicz, Christoph A1 - Polthier, Konrad A1 - Weiser, Martin T1 - Reducing Memory Requirements in Scientific Computing and Optimal Control N2 - In high accuracy numerical simulations and optimal control of time-dependent processes, often both many time steps and fine spatial discretizations are needed. Adjoint gradient computation, or post-processing of simulation results, requires the storage of the solution trajectories over the whole time, if necessary together with the adaptively refined spatial grids. In this paper we discuss various techniques to reduce the memory requirements, focusing first on the storage of the solution data, which typically are double precision floating point values. We highlight advantages and disadvantages of the different approaches. Moreover, we present an algorithm for the efficient storage of adaptively refined, hierarchic grids, and the integration with the compressed storage of solution data. T3 - ZIB-Report - 13-64 KW - optimal control KW - trajectory storage KW - mesh compression KW - compression Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42695 SN - 1438-0064 ER - TY - GEN A1 - Götschel, Sebastian A1 - Nagaiah, Chamakuri A1 - Kunisch, Karl A1 - Weiser, Martin T1 - Lossy Compression in Optimal Control of Cardiac Defibrillation N2 - This paper presents efficient computational techniques for solving an optimization problem in cardiac defibrillation governed by the monodomain equations. Time-dependent electrical currents injected at different spatial positions act as the control. Inexact Newton-CG methods are used, with reduced gradient computation by adjoint solves. In order to reduce the computational complexity, adaptive mesh refinement for state and adjoint equations is performed. To reduce the high storage and bandwidth demand imposed by adjoint gradient and Hessian-vector evaluations, a lossy compression technique for storing trajectory data is applied. An adaptive choice of quantization tolerance based on error estimates is developed in order to ensure convergence. The efficiency of the proposed approach is demonstrated on numerical examples. T3 - ZIB-Report - 13-26 KW - monodomain model KW - defibrillation KW - optimal control KW - Newton-CG KW - trajectory storage KW - compression Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18566 SN - 1438-0064 ER - TY - GEN A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - Lossy Compression for PDE-constrained Optimization: Adaptive Error Control N2 - For the solution of optimal control problems governed by nonlinear parabolic PDEs, methods working on the reduced objective functional are often employed to avoid a full spatio-temporal discretization of the problem. The evaluation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the ad-joint equation. The state enters into the adjoint equation, requiring the storage of a full 4D data set. If Newton-CG methods are used, two additional trajectories have to be stored. To get numerical results which are accurate enough, in many case very fine discretizations in time and space are necessary, which leads to a significant amount of data to be stored and transmitted to mass storage. Lossy compression methods were developed to overcome the storage problem by reducing the accuracy of the stored trajectories. The inexact data induces errors in the reduced gradient and reduced Hessian. In this paper, we analyze the influence of such a lossy trajectory compression method on Newton-CG methods for optimal control of parabolic PDEs and design an adaptive strategy for choosing appropriate quantization tolerances. T3 - ZIB-Report - 13-27 KW - optimal control KW - semilinear parabolic PDEs KW - Newton-CG KW - trajectory storage KW - lossy compression Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18575 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - A Discrete-Continuous Algorithm for Free Flight Planning N2 - We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach. T3 - ZIB-Report - 20-33 KW - shortest path KW - flight planning KW - free flight KW - discrete-continuous algorithm KW - optimal control KW - discrete optimization Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81343 SN - 1438-0064 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - A Discrete-Continuous Algorithm for Free Flight Planning JF - Algorithms N2 - We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach. KW - shortest path KW - flight planning KW - free flight KW - discrete-continuous algorithm KW - optimal control KW - discrete optimization Y1 - 2020 U6 - https://doi.org/10.3390/a14010004 SN - 1438-0064 VL - 14 IS - 1 SP - 4 PB - MDPI ER - TY - GEN A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - Convergence Properties of Newton's Method for Globally Optimal Free Flight Trajectory Optimization N2 - The algorithmic efficiency of Newton-based methods for Free Flight Trajectory Optimization is heavily influenced by the size of the domain of convergence. We provide numerical evidence that the convergence radius is much larger in practice than what the theoretical worst case bounds suggest. The algorithm can be further improved by a convergence-enhancing domain decomposition. T3 - ZIB-Report - 23-19 KW - shortest path KW - flight planning KW - free flight KW - optimal control KW - global optimization KW - Newton's method Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-91309 SN - 1438-0064 ER -