TY - GEN A1 - Götschel, Sebastian A1 - Weiser, Martin A1 - Schiela, Anton T1 - Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox N2 - This paper presents concepts and implementation of the finite element toolbox Kaskade 7, a flexible C++ code for solving elliptic and parabolic PDE systems. Issues such as problem formulation, assembly and adaptivity are discussed at the example of optimal control problems. Trajectory compression for parabolic optimization problems is considered as a case study. T3 - ZIB-Report - 10-25 KW - partial differential equations KW - optimal control KW - finite elements KW - generic programming KW - adaptive methods Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11909 SN - 1438-0064 ER - TY - GEN A1 - Götschel, Sebastian A1 - Schiela, Anton A1 - Weiser, Martin T1 - Kaskade 7 -- a Flexible Finite Element Toolbox N2 - Kaskade 7 is a finite element toolbox for the solution of stationary or transient systems of partial differential equations, aimed at supporting application-oriented research in numerical analysis and scientific computing. The library is written in C++ and is based on the Dune interface. The code is independent of spatial dimension and works with different grid managers. An important feature is the mix-and-match approach to discretizing systems of PDEs with different ansatz and test spaces for all variables. We describe the mathematical concepts behind the library as well as its structure, illustrating its use at several examples on the way. T3 - ZIB-Report - 19-48 KW - finite elements KW - generic programming KW - partial differential equations Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74616 SN - 1438-0064 ER - TY - GEN A1 - Weiser, Martin A1 - Gänzler, Tobias A1 - Schiela, Anton T1 - A Control Reduced Primal Interior Point Method for PDE Constrained Optimization N2 - A primal interior point method for control constrained optimal control problems with PDE constraints is considered. Pointwise elimination of the control leads to a homotopy in the remaining state and dual variables, which is addressed by a short step pathfollowing method. The algorithm is applied to the continuous, infinite dimensional problem, where discretization is performed only in the innermost loop when solving linear equations. The a priori elimination of the least regular control permits to obtain the required accuracy with comparable coarse meshes. Convergence of the method and discretization errors are studied, and the method is illustrated at two numerical examples. T3 - ZIB-Report - 04-38 KW - interior point methods in function space KW - optimal control KW - finite elements KW - discretization error Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8138 ER -