TY - GEN A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Seebass, Martin T1 - A New Nonlinear Elliptic Multilevel FEM Applied to Regional Hyperthermia N2 - In the clinical cancer therapy of regional hyperthermia nonlinear perfusion effects inside and outside the tumor seem to play a not negligible role. A stationary model of such effects leads to a nonlinear Helmholtz term within an elliptic boundary value problem. The present paper reports about the application of a recently designed adaptive multilevel FEM to this problem. For several 3D virtual patients, nonlinear versus linear model is studied. Moreover, the numerical efficiency of the new algorithm is compared with a former application of an adaptive FEM to the corresponding instationary model PDE. T3 - ZIB-Report - SC-98-35 KW - hyperthermia KW - nonlinear elliptic KW - multilevel FEM Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3785 ER - TY - JOUR A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Seebaß, Martin T1 - A New Nonlinear Elliptic Multilevel FEM Applied to Regional Hyperthermia JF - Comput. Visual. Sci. Y1 - 2000 U6 - https://doi.org/10.1007/PL00013546 VL - 3 SP - 1 EP - 6 ER - TY - JOUR A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Seebass, Martin T1 - A new nonlinear elliptic multilevel FEM in clinical cancer therapy planning JF - Comput. Vis. Sci. Y1 - 2000 VL - 3 SP - 115 EP - 120 ER - TY - BOOK A1 - Deuflhard, Peter A1 - Weiser, Martin T1 - Adaptive numerical solution of PDEs Y1 - 2012 PB - de Gruyter CY - Berlin ER - TY - GEN A1 - Weiser, Martin A1 - Deuflhard, Peter A1 - Erdmann, Bodo T1 - Affine conjugate adaptive Newton methods for nonlinear elastomechanics N2 - The paper extends affine conjugate Newton methods from convex to nonconvex minimization, with particular emphasis on PDE problems originating from compressible hyperelasticity. Based on well-known schemes from finite dimensional nonlinear optimization, three different algorithmic variants are worked out in a function space setting, which permits an adaptive multilevel finite element implementation. These algorithms are tested on two well-known 3D test problems and a real-life example from surgical operation planning. T3 - ZIB-Report - 04-01 KW - affine conjugate Newton methods KW - nonconvex minimization KW - nonlinear elastomechnics KW - cranio-maxillofacial surgery KW - soft tissue simulation KW - multilev Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7768 ER - TY - JOUR A1 - Weiser, Martin A1 - Deuflhard, Peter A1 - Erdmann, Bodo T1 - Affine conjugate adaptive Newton methods for nonlinear elastomechanics JF - Opt. Meth. Softw. Y1 - 2007 VL - 22 IS - 3 SP - 413 EP - 431 ER - TY - GEN A1 - Deuflhard, Peter A1 - Nowak, Ulrich A1 - Weiser, Martin T1 - Affine Invariant Adaptive Newton Codes for Discretized PDEs N2 - The paper deals with three different Newton algorithms that have recently been worked out in the general frame of affine invariance. Of particular interest is their performance in the numerical solution of discretized boundary value problems (BVPs) for nonlinear partial differential equations (PDEs). Exact Newton methods, where the arising linear systems are solved by direct elimination, and inexact Newton methods, where an inner iteration is used instead, are synoptically presented, both in affine invariant convergence theory and in numerical experiments. The three types of algorithms are: (a) affine covariant (formerly just called affine invariant) Newton algorithms, oriented toward the iterative errors, (b) affine contravariant Newton algorithms, based on iterative residual norms, and (c) affine conjugate Newton algorithms for convex optimization problems and discrete nonlinear elliptic PDEs. T3 - ZIB-Report - 02-33 KW - Affine invariant Newton methods KW - global Newton methods KW - inexact Newton methods KW - adaptive trust region methods KW - nonlinear partial differential equa Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7005 ER - TY - GEN A1 - Weiser, Martin A1 - Schiela, Anton A1 - Deuflhard, Peter T1 - Asymptotic Mesh Independence of Newton's Method Revisited N2 - The paper presents a new affine invariant theory on asymptotic mesh independence of Newton's method in nonlinear PDEs. Compared to earlier attempts, the new approach is both much simpler and more natural from the algorithmic point of view. The theory is exemplified at collocation methods for ODE boundary value problems and at finite element methods for elliptic PDE problems. T3 - ZIB-Report - 03-13 KW - mesh independence KW - nonlinear partial differential equations KW - Newton method KW - finite element method KW - collocation method Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7352 ER - TY - JOUR A1 - Weiser, Martin A1 - Schiela, Anton A1 - Deuflhard, Peter T1 - Asymptotic Mesh Independence of Newton’s Method Revisited JF - SIAM J. Num. Anal. Y1 - 2005 VL - 42 IS - 5 SP - 1830 EP - 1845 ER - TY - JOUR A1 - Weiser, Martin A1 - Zachow, Stefan A1 - Deuflhard, Peter T1 - Craniofacial Surgery Planning Based on Virtual Patient Models JF - it - Information Technology Y1 - 2010 U6 - https://doi.org/10.1524/itit.2010.0600 VL - 52 IS - 5 SP - 258 EP - 263 PB - Oldenbourg Verlagsgruppe ER -