TY - JOUR A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Seebaß, Martin T1 - A New Nonlinear Elliptic Multilevel FEM Applied to Regional Hyperthermia JF - Comput. Visual. Sci. Y1 - 2000 U6 - https://doi.org/10.1007/PL00013546 VL - 3 SP - 1 EP - 6 ER - TY - JOUR A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Seebass, Martin T1 - A new nonlinear elliptic multilevel FEM in clinical cancer therapy planning JF - Comput. Vis. Sci. Y1 - 2000 VL - 3 SP - 115 EP - 120 ER - TY - JOUR A1 - Weiser, Martin A1 - Deuflhard, Peter A1 - Erdmann, Bodo T1 - Affine conjugate adaptive Newton methods for nonlinear elastomechanics JF - Opt. Meth. Softw. Y1 - 2007 VL - 22 IS - 3 SP - 413 EP - 431 ER - TY - JOUR A1 - Weiser, Martin A1 - Schiela, Anton A1 - Deuflhard, Peter T1 - Asymptotic Mesh Independence of Newton’s Method Revisited JF - SIAM J. Num. Anal. Y1 - 2005 VL - 42 IS - 5 SP - 1830 EP - 1845 ER - TY - JOUR A1 - Weiser, Martin A1 - Zachow, Stefan A1 - Deuflhard, Peter T1 - Craniofacial Surgery Planning Based on Virtual Patient Models JF - it - Information Technology Y1 - 2010 U6 - https://doi.org/10.1524/itit.2010.0600 VL - 52 IS - 5 SP - 258 EP - 263 PB - Oldenbourg Verlagsgruppe ER - TY - JOUR A1 - Weiser, Martin A1 - Deuflhard, Peter T1 - Inexact central path following algorithms for optimal control problems JF - SIAM J. Control Opt. Y1 - 2007 VL - 46 IS - 3 SP - 792 EP - 815 ER - TY - JOUR A1 - Deuflhard, Peter A1 - Schiela, Anton A1 - Weiser, Martin T1 - Mathematical Cancer Therapy Planning in Deep Regional Hyperthermia JF - Acta Numerica N2 - This paper surveys the required mathematics for a typical challenging problem from computational medicine, the cancer therapy planning in deep regional hyperthermia. In the course of many years of close cooperation with clinics, the medical problem gave rise to quite a number of subtle mathematical problems, part of which had been unsolved when the common project started. Efficiency of numerical algorithms, i.e. computational speed and monitored reliability, play a decisive role for the medical treatment. Off-the-shelf software had turned out to be not sufficient to meet the requirements of medicine. Rather, new mathematical theory as well as new numerical algorithms had to be developed. In order to make our algorithms useful in the clinical environment, new visualization software, a virtual lab, including 3D geometry processing of individual virtual patients had to be designed and implemented. Moreover, before the problems could be attacked by numerical algorithms, careful mathematical modelling had to be done. Finally, parameter identification and constrained optimization for the PDEs had to be newly analyzed and realized over the individual patient's geometry. Our new techniques had an impact on the specificity of the individual patients' treatment and on the construction of an improved hyperthermia applicator. Y1 - 2012 VL - 21 SP - 307 EP - 378 ER - TY - JOUR A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Zachow, Stefan T1 - Mathematics in Facial Surgery JF - AMS Notices Y1 - 2006 VL - 53 IS - 9 SP - 1012 EP - 1016 ER - TY - JOUR A1 - Moualeu-Ngangue, Dany Pascal A1 - Weiser, Martin A1 - Ehrig, Rainald A1 - Deuflhard, Peter T1 - Optimal control for a tuberculosis model with undetected cases in Cameroon JF - Communications in Nonlinear Science and Numerical Simulation N2 - This paper considers the optimal control of tuberculosis through education, diagnosis campaign and chemoprophylaxis of latently infected. A mathematical model which includes important components such as undiagnosed infectious, diagnosed infectious, latently infected and lost-sight infectious is formulated. The model combines a frequency dependent and a density dependent force of infection for TB transmission. Through optimal control theory and numerical simulations, a cost-effective balance of two different intervention methods is obtained. Seeking to minimize the amount of money the government spends when tuberculosis remain endemic in the Cameroonian population, Pontryagin's maximum principle is used to characterize the optimal control. The optimality system is derived and solved numerically using the forward-backward sweep method (FBSM). Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods. It comes out that combining chemoprophylaxis and education, the burden of TB can be reduced by 80 % in 10 years. Y1 - 2015 U6 - https://doi.org/10.1016/j.cnsns.2014.06.037 VL - 20 IS - 3 SP - 986 EP - 1003 ER -