TY - GEN A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Pomplun, Jan A1 - Zschiedrich, Lin A1 - Burger, Sven A1 - Schmidt, Frank T1 - Reduced basis method for Maxwell's equations with resonance phenomena T2 - Proc. SPIE N2 - Rigorous optical simulations of 3-dimensional nano-photonic structures are an important tool in the analysis and optimization of scattering properties of nano-photonic devices or parameter reconstruction. To construct geometrically accurate models of complex structured nano-photonic devices the finite element method (FEM) is ideally suited due to its flexibility in the geometrical modeling and superior convergence properties. Reduced order models such as the reduced basis method (RBM) allow to construct self-adaptive, error-controlled, very low dimensional approximations for input-output relationships which can be evaluated orders of magnitude faster than the full model. This is advantageous in applications requiring the solution of Maxwell's equations for multiple parameters or a single parameter but in real time. We present a reduced basis method for 3D Maxwell's equations based on the finite element method which allows variations of geometric as well as material and frequency parameters. We demonstrate accuracy and efficiency of the method for a light scattering problem exhibiting a resonance in the electric field. T3 - ZIB-Report - 15-37 KW - reduced basis method KW - finite element method KW - maxwell equation KW - photonic crystal KW - nano-photonics Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-55687 SN - 1438-0064 VL - 9630 SP - 96300R ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Pomplun, Jan A1 - Burger, Sven A1 - Schmidt, Frank T1 - Model order reduction for the time-harmonic Maxwell equation applied to complex nanostructures T2 - Proc. SPIE N2 - Fields such as optical metrology and computational lithography require fast and efficient methods for solving the time-harmonic Maxwell’s equation. Highly accurate geometrical modeling and numerical accuracy atcomputational costs are a prerequisite for any simulation study of complex nano-structured photonic devices. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem based on the hp-adaptive finite element solver JCMsuite capable of handling geometric and non-geometric parameter dependencies allowing for online evaluations in milliseconds. We apply the RBM to compute light-scatteringoptical wavelengths off periodic arrays of fin field-effect transistors (FinFETs) where geometrical properties such as the width and height of the fin and gate can vary in a large range. T3 - ZIB-Report - 16-05 KW - reduced basis method KW - finite element method KW - rigorous optical modeling KW - reduced order models KW - electromagnetic field solver Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57239 SN - 1438-0064 VL - 9742 SP - 97420M ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Barth, Carlo A1 - Pomplun, Jan A1 - Burger, Sven A1 - Becker, Christiane A1 - Schmidt, Frank T1 - Reconstruction of photonic crystal geometries using a reduced basis method for nonlinear outputs N2 - Maxwell solvers based on the hp-adaptive finite element method allow for accurate geometrical modeling and high numerical accuracy. These features are indispensable for the optimization of optical properties or reconstruction of parameters through inverse processes. High computational complexity prohibits the evaluation of the solution for many parameters. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem allowing to compute solutions for a parameter configuration orders of magnitude faster. The RBM allows to evaluate linear and nonlinear outputs of interest like Fourier transform or the enhancement of the electromagnetic field in milliseconds. We apply the RBM to compute light-scattering off two dimensional photonic crystal structures made of silicon and reconstruct geometrical parameters. T3 - ZIB-Report - 16-06 KW - finite element method KW - rigorous optical modeling KW - photonic crystals KW - reduced basis method KW - parameter estimation KW - optical metrology Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57249 SN - 1438-0064 ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Burger, Sven A1 - Pomplun, Jan A1 - Schmidt, Frank T1 - Reduced basis method for the optimization of nano-photonic devices N2 - Optical 3D simulations in many-query and real-time contexts require new solution strategies. We study an adaptive, error controlled reduced basis method for solving parametrized time-harmonic optical scattering problems. Application fields are, among others, design and optimization problems of nano-optical devices as well as inverse problems for parameter reconstructions occuring e. g. in optical metrology. The reduced basis method presented here relies on a finite element modeling of the scattering problem with parametrization of materials, geometries and sources. T3 - ZIB-Report - 16-10 KW - reduced basis method KW - model reduction KW - optical critical dimension metrology KW - electromagnetic field solver Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57556 SN - 1438-0064 ER -