TY - CHAP A1 - Hanik, Martin A1 - Hege, Hans-Christian A1 - von Tycowicz, Christoph T1 - Bi-invariant Two-Sample Tests in Lie Groups for Shape Analysis T2 - Shape in Medical Imaging N2 - We propose generalizations of the T²-statistics of Hotelling and the Bhattacharayya distance for data taking values in Lie groups. A key feature of the derived measures is that they are compatible with the group structure even for manifolds that do not admit any bi-invariant metric. This property, e.g., assures analysis that does not depend on the reference shape, thus, preventing bias due to arbitrary choices thereof. Furthermore, the generalizations agree with the common definitions for the special case of flat vector spaces guaranteeing consistency. Employing a permutation test setup, we further obtain nonparametric, two-sample testing procedures that themselves are bi-invariant and consistent. We validate our method in group tests revealing significant differences in hippocampal shape between individuals with mild cognitive impairment and normal controls. Y1 - 2020 U6 - https://doi.org/10.1007/978-3-030-61056-2_4 SP - 44 EP - 54 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Hanik, Martin A1 - Hege, Hans-Christian A1 - Hennemuth, Anja A1 - von Tycowicz, Christoph T1 - Nonlinear Regression on Manifolds for Shape Analysis using Intrinsic Bézier Splines T2 - Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI) N2 - Intrinsic and parametric regression models are of high interest for the statistical analysis of manifold-valued data such as images and shapes. The standard linear ansatz has been generalized to geodesic regression on manifolds making it possible to analyze dependencies of random variables that spread along generalized straight lines. Nevertheless, in some scenarios, the evolution of the data cannot be modeled adequately by a geodesic. We present a framework for nonlinear regression on manifolds by considering Riemannian splines, whose segments are Bézier curves, as trajectories. Unlike variational formulations that require time-discretization, we take a constructive approach that provides efficient and exact evaluation by virtue of the generalized de Casteljau algorithm. We validate our method in experiments on the reconstruction of periodic motion of the mitral valve as well as the analysis of femoral shape changes during the course of osteoarthritis, endorsing Bézier spline regression as an effective and flexible tool for manifold-valued regression. Y1 - 2020 U6 - https://doi.org/10.1007/978-3-030-59719-1_60 SP - 617 EP - 626 PB - Springer International Publishing CY - Cham ER - TY - GEN A1 - Ambellan, Felix A1 - Hanik, Martin A1 - von Tycowicz, Christoph T1 - Morphomatics: Geometric morphometrics in non-Euclidean shape spaces N2 - Morphomatics is an open-source Python library for (statistical) shape analysis developed within the geometric data analysis and processing research group at Zuse Institute Berlin. It contains prototype implementations of intrinsic manifold-based methods that are highly consistent and avoid the influence of unwanted effects such as bias due to arbitrary choices of coordinates. KW - shape analysis KW - geometric statistics KW - geometric morphometrics Y1 - 2021 U6 - https://doi.org/10.12752/8544 N1 - https://morphomatics.github.io/ ER - TY - JOUR A1 - Sipiran, Ivan A1 - Lazo, Patrick A1 - Lopez, Cristian A1 - Bagewadi, Nihar A1 - Bustos, Benjamin A1 - Dao, Hieu A1 - Gangisetty, Shankar A1 - Hanik, Martin A1 - Ho-Thi, Ngoc-Phuong A1 - Holenderski, Mike A1 - Jarnikov, Dmitri A1 - Labrada, Arniel A1 - Lengauer, Stefan A1 - Licandro, Roxane A1 - Nguyen, Dinh-Huan A1 - Nguyen-Ho, Thang-Long A1 - Pérez Rey, Luis A. A1 - Pham, Bang-Dang A1 - Pham, Minh-Khoi A1 - Preiner, Reinhold A1 - Schreck, Tobias A1 - Trinh, Quoc-Huy A1 - Tonnaer, Loek A1 - von Tycowicz, Christoph A1 - Vu-Le, The-Anh T1 - SHREC 2021: Retrieval of Cultural Heritage Objects JF - Computers and Graphics N2 - This paper presents the methods and results of the SHREC’21 contest on a dataset of cultural heritage (CH) objects. We present a dataset of 938 scanned models that have varied geometry and artistic styles. For the competition, we propose two challenges: the retrieval-by-shape challenge and the retrieval-by-culture challenge. The former aims at evaluating the ability of retrieval methods to discriminate cultural heritage objects by overall shape. The latter focuses on assessing the effectiveness of retrieving objects from the same culture. Both challenges constitute a suitable scenario to evaluate modern shape retrieval methods in a CH domain. Ten groups participated in the contest: thirty runs were submitted for the retrieval-by-shape task, and twenty-six runs were submitted for the retrieval-by-culture challenge. The results show a predominance of learning methods on image-based multi-view representations to characterize 3D objects. Nevertheless, the problem presented in our challenges is far from being solved. We also identify the potential paths for further improvements and give insights into the future directions of research. Y1 - 2021 U6 - https://doi.org/10.1016/j.cag.2021.07.010 VL - 100 SP - 1 EP - 20 ER - TY - CHAP A1 - Hanik, Martin A1 - Hege, Hans-Christian A1 - von Tycowicz, Christoph T1 - A Nonlinear Hierarchical Model for Longitudinal Data on Manifolds T2 - 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) N2 - Large longitudinal studies provide lots of valuable information, especially in medical applications. A problem which must be taken care of in order to utilize their full potential is that of correlation between intra-subject measurements taken at different times. For data in Euclidean space this can be done with hierarchical models, that is, models that consider intra-subject and between-subject variability in two different stages. Nevertheless, data from medical studies often takes values in nonlinear manifolds. Here, as a first step, geodesic hierarchical models have been developed that generalize the linear ansatz by assuming that time-induced intra-subject variations occur along a generalized straight line in the manifold. However, this is often not the case (e.g., periodic motion or processes with saturation). We propose a hierarchical model for manifold-valued data that extends this to include trends along higher-order curves, namely Bézier splines in the manifold. To this end, we present a principled way of comparing shape trends in terms of a functional-based Riemannian metric. Remarkably, this metric allows efficient, yet simple computations by virtue of a variational time discretization requiring only the solution of regression problems. We validate our model on longitudinal data from the osteoarthritis initiative, including classification of disease progression. Y1 - 2022 U6 - https://doi.org/10.1109/ISBI52829.2022.9761465 SP - 1 EP - 5 ER -