TY - JOUR A1 - Borndörfer, Ralf A1 - Hoppmann, Heide A1 - Karbstein, Marika A1 - Lindner, Niels T1 - Separation of cycle inequalities in periodic timetabling JF - Discrete Optimization N2 - Cycle inequalities play an important role in the polyhedral study of the periodic timetabling problem in public transport. We give the first pseudo-polynomial time separation algorithm for cycle inequalities, and we contribute a rigorous proof for the pseudo-polynomial time separability of the change-cycle inequalities. Moreover, we provide several NP-completeness results, indicating that pseudo-polynomial time is best possible. The efficiency of these cutting planes is demonstrated on real-world instances of the periodic timetabling problem. Y1 - 2020 U6 - https://doi.org/10.1016/j.disopt.2019.100552 IS - 35 SP - 100552 ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Karbstein, Marika A1 - Liebchen, Christian A1 - Lindner, Niels T1 - A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable T2 - 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018) N2 - We consider the following planning problem in public transportation: Given a periodic timetable, how many vehicles are required to operate it? In [9], for this sequential approach, it is proposed to first expand the periodic timetable over time, and then answer the above question by solving a flow-based aperiodic optimization problem. In this contribution we propose to keep the compact periodic representation of the timetable and simply solve a particular perfect matching problem. For practical networks, it is very much likely that the matching problem decomposes into several connected components. Our key observation is that there is no need to change any turnaround decision for the vehicles of a line during the day, as long as the timetable stays exactly the same. Y1 - 2018 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2018.16 VL - 65 SP - 16:1 EP - 16:15 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Karbstein, Marika A1 - Liebchen, Christian A1 - Lindner, Niels T1 - A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable N2 - We consider the following planning problem in public transportation: Given a periodic timetable, how many vehicles are required to operate it? In [9], for this sequential approach, it is proposed to first expand the periodic timetable over time, and then answer the above question by solving a flow-based aperiodic optimization problem. In this contribution we propose to keep the compact periodic representation of the timetable and simply solve a particular perfect matching problem. For practical networks, it is very much likely that the matching problem decomposes into several connected components. Our key observation is that there is no need to change any turnaround decision for the vehicles of a line during the day, as long as the timetable stays exactly the same. T3 - ZIB-Report - 18-38 KW - Vehicle scheduling KW - Periodic timetabling KW - Bipartite matching Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69688 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Hoppmann, Heide A1 - Karbstein, Marika A1 - Lindner, Niels T1 - Separation of Cycle Inequalities in Periodic Timetabling N2 - Cycle inequalities play an important role in the polyhedral study of the periodic timetabling problem. We give the first pseudo-polynomial time separation algo- rithm for cycle inequalities, and we give a rigorous proof for the pseudo-polynomial time separability of the change-cycle inequalities. Moreover, we provide several NP-completeness results, indicating that pseudo-polynomial time is best possible. The efficiency of these cutting planes is demonstrated on real-world instances of the periodic timetabling problem. T3 - ZIB-Report - 18-16 KW - Periodic timetabling KW - Cycle inequality KW - Change-cycle inequality Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69746 SN - 1438-0064 ER -