TY - JOUR A1 - Kostre, Margarita A1 - Schütte, Christof A1 - Noé, Frank A1 - del Razo Sarmina, Mauricio T1 - Coupling Particle-Based Reaction-Diffusion Simulations with Reservoirs Mediated by Reaction-Diffusion PDEs JF - Multiscale Modeling & Simulation N2 - Open biochemical systems of interacting molecules are ubiquitous in life-related processes. However, established computational methodologies, like molecular dynamics, are still mostly constrained to closed systems and timescales too small to be relevant for life processes. Alternatively, particle-based reaction-diffusion models are currently the most accurate and computationally feasible approach at these scales. Their efficiency lies in modeling entire molecules as particles that can diffuse and interact with each other. In this work, we develop modeling and numerical schemes for particle-based reaction-diffusion in an open setting, where the reservoirs are mediated by reaction-diffusion PDEs. We derive two important theoretical results. The first one is the mean-field for open systems of diffusing particles; the second one is the mean-field for a particle-based reaction-diffusion system with second-order reactions. We employ these two results to develop a numerical scheme that consistently couples particle-based reaction-diffusion processes with reaction-diffusion PDEs. This allows modeling open biochemical systems in contact with reservoirs that are time-dependent and spatially inhomogeneous, as in many relevant real-world applications. Y1 - 2021 U6 - https://doi.org/10.1137/20M1352739 VL - 19 IS - 4 SP - 1659 EP - 1683 PB - Society for Industrial and Applied Mathematics ER - TY - JOUR A1 - Kostré, Margarita A1 - Sunkara, Vikram A1 - Schütte, Christof A1 - Djurdjevac Conrad, Natasa T1 - Understanding the Romanization Spreading on Historical Interregional Networks in Northern Tunisia JF - Applied Network Science N2 - Spreading processes are important drivers of change in social systems. To understand the mechanisms of spreading it is fundamental to have information about the underlying contact network and the dynamical parameters of the process. However, in many real-wold examples, this information is not known and needs to be inferred from data. State-of-the-art spreading inference methods have mostly been applied to modern social systems, as they rely on availability of very detailed data. In this paper we study the inference challenges for historical spreading processes, for which only very fragmented information is available. To cope with this problem, we extend existing network models by formulating a model on a mesoscale with temporal spreading rate. Furthermore, we formulate the respective parameter inference problem for the extended model. We apply our approach to the romanization process of Northern Tunisia, a scarce dataset, and study properties of the inferred time-evolving interregional networks. As a result, we show that (1) optimal solutions consist of very different network structures and spreading rate functions; and that (2) these diverse solutions produce very similar spreading patterns. Finally, we discuss how inferred dominant interregional connections are related to available archaeological traces. Historical networks resulting from our approach can help understanding complex processes of cultural change in ancient times. KW - mesoscale spreading process KW - network inference KW - time-evolving network KW - romanization spreading KW - scarce data Y1 - 2022 U6 - https://doi.org/10.1007/s41109-022-00492-w VL - 7 PB - Springer Nature ER - TY - JOUR A1 - Djurdjevac Conrad, Natasa A1 - Chemnitz, Robin A1 - Kostre, Margarita A1 - Schweigart, Fleur A1 - Fless, Friederike A1 - Schütte, Christof A1 - Ducke, Benjamin T1 - A Mathematical perspective on Romanisation: Modelling the Roman road activation process in ancient Tunisia Y1 - 2023 ER -