TY - JOUR A1 - Beron-Vera, Francisco Javier A1 - Olascoaga, Maria Josefina A1 - Helfmann, Luzie A1 - Miron, Philippe T1 - Sampling-Dependent Transition Paths of Iceland-Scotland Overflow Water JF - Journal of Physical Oceanography N2 - In this note, we apply Transition Path Theory (TPT) from Markov chains to shed light on the problem of Iceland-Scotland Overflow Water (ISOW) equatorward export. A recent analysis of observed trajectories of submerged floats demanded revision of the traditional abyssal circulation theory, which postulates that ISOW should steadily flow along a deep boundary current (DBC) around the subpolar North Atlantic prior to exiting it. The TPT analyses carried out here allow to focus the attention on the portions of flow from the origin of ISOW to the region where ISOW exits the subpolar North Atlantic and suggest that insufficient sampling may be biasing the aforementioned demand. The analyses, appropriately adapted to represent a continuous input of ISOW, are carried out on three time-homogeneous Markov chains modeling the ISOW flow. One is constructed using a high number of simulated trajectories homogeneously covering the flow domain. The other two use much fewer trajectories which heterogeneously cover the domain. The trajectories in the latter two chains are observed trajectories or simulated trajectories subsampled at the observed frequency. While the densely sampled chain supports a well-defined DBC, the more heterogeneously sampled chains do not, irrespective of whether observed or simulated trajectories are used. Studying the sampling sensitivity of the Markov chains, we can give recommendations for enlarging the existing float dataset to improve the significance of conclusions about time-asymptotic aspects of the ISOW circulation. Y1 - 2023 U6 - https://doi.org/10.1175/JPO-D-22-0172.1 VL - 53 IS - 4 SP - 1151 EP - 1160 ER - TY - JOUR A1 - Helfmann, Luzie A1 - Conrad, Natasa Djurdjevac A1 - Lorenz-Spreen, Philipp A1 - Schütte, Christof T1 - Modelling opinion dynamics under the impact of influencer and media strategies JF - Scientific Reports N2 - Digital communication has made the public discourse considerably more complex, and new actors and strategies have emerged as a result of this seismic shift. Aside from the often-studied interactions among individuals during opinion formation, which have been facilitated on a large scale by social media platforms, the changing role of traditional media and the emerging role of "influencers" are not well understood, and the implications of their engagement strategies arising from the incentive structure of the attention economy even less so. Here we propose a novel opinion dynamics model that accounts for these different roles, namely that media and influencers change their own positions on slower time scales than individuals, while influencers dynamically gain and lose followers. Numerical simulations show the importance of their relative influence in creating qualitatively different opinion formation dynamics: with influencers, fragmented but short-lived clusters emerge, which are then counteracted by more stable media positions. Mean-field approximations by partial differential equations reproduce this dynamic. Based on the mean-field model, we study how strategies of influencers to gain more followers can influence the overall opinion distribution. We show that moving towards extreme positions can be a beneficial strategy for influencers to gain followers. Finally, we demonstrate that optimal control strategies allow other influencers or media to counteract such attempts and prevent further fragmentation of the opinion landscape. Our modelling framework contributes to better understanding the different roles and strategies in the increasingly complex information ecosystem and their impact on public opinion formation. Y1 - 2023 U6 - https://doi.org/10.1038/s41598-023-46187-9 VL - 13 SP - 19375 ER -