TY - JOUR A1 - Zhang, Wei A1 - Li, Tiejun A1 - Schütte, Christof T1 - Solving eigenvalue PDEs of metastable diffusion processes using artificial neural networks JF - Journal of Computational Physics N2 - In this paper, we consider the eigenvalue PDE problem of the infinitesimal generators of metastable diffusion processes. We propose a numerical algorithm based on training artificial neural networks for solving the leading eigenvalues and eigenfunctions of such high-dimensional eigenvalue problem. The algorithm is useful in understanding the dynamical behaviors of metastable processes on large timescales. We demonstrate the capability of our algorithm on a high-dimensional model problem, and on the simple molecular system alanine dipeptide. Y1 - 2021 U6 - https://doi.org/10.1016/j.jcp.2022.111377 VL - 465 ER - TY - JOUR A1 - Zhao, Yue A1 - Zhang, Wei A1 - Li, Tiejun T1 - EPR-Net: Constructing non-equilibrium potential landscape via a variational force projection formulation JF - National Science Review N2 - We present EPR-Net, a novel and effective deep learning approach that tackles a crucial challenge in biophysics: constructing potential landscapes for high-dimensional non-equilibrium steady-state (NESS) systems. EPR-Net leverages a nice mathematical fact that the desired negative potential gradient is simply the orthogonal projection of the driving force of the underlying dynamics in a weighted inner-product space. Remarkably, our loss function has an intimate connection with the steady entropy production rate (EPR), enabling simultaneous landscape construction and EPR estimation. We introduce an enhanced learning strategy for systems with small noise, and extend our framework to include dimensionality reduction and state-dependent diffusion coefficient case in a unified fashion. Comparative evaluations on benchmark problems demonstrate the superior accuracy, effectiveness, and robustness of EPR-Net compared to existing methods. We apply our approach to challenging biophysical problems, such as an 8D limit cycle and a 52D multi-stability problem, which provide accurate solutions and interesting insights on constructed landscapes. With its versatility and power, EPR-Net offers a promising solution for diverse landscape construction problems in biophysics. Y1 - 2024 U6 - https://doi.org/10.1093/nsr/nwae052 ER -