TY - JOUR A1 - Furini, Fabio A1 - Traversi, Emiliano A1 - Belotti, Pietro A1 - Frangioni, Antonio A1 - Gleixner, Ambros A1 - Gould, Nick A1 - Liberti, Leo A1 - Lodi, Andrea A1 - Misener, Ruth A1 - Mittelmann, Hans A1 - Sahinidis, Nikolaos V. A1 - Vigerske, Stefan A1 - Wiegele, Angelika T1 - QPLIB: A Library of Quadratic Programming Instances JF - Mathematical Programming Computation N2 - This paper describes a new instance library for Quadratic Programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function, the constrains, or both are quadratic. QP is a very diverse class of problems, comprising sub-classes of problems ranging from trivial to undecidable. This diversity is reflected in the variety of solution methods for QP, ranging from entirely combinatorial ones to completely continuous ones, including many for which both aspects are fundamental. Selecting a set of instances of QP that is at the same time not overwhelmingly onerous but sufficiently challenging for the many different interested communities is therefore important. We propose a simple taxonomy for QP instances that leads to a systematic problem selection mechanism. We then briefly survey the field of QP, giving an overview of theory, methods and solvers. Finally, we describe how the library was put together, and detail its final contents. Y1 - 2019 U6 - https://doi.org/10.1007/s12532-018-0147-4 VL - 11 IS - 2 SP - 237 EP - 265 ER - TY - JOUR A1 - Liberti, Leo A1 - Iommazzo, Gabriele A1 - Lavor, Carlile A1 - Maculan, Nelson T1 - Cycle-based formulations in distance geometry JF - Open Journal of Mathematical Optimization N2 - The distance geometry problem asks to find a realization of a given simple edge-weighted graph in a Euclidean space of given dimension , where the edges are realized as straight segments of lengths equal (or as close as possible) to the edge weights. The problem is often modelled as a mathematical programming formulation involving decision variables that determine the position of the vertices in the given Euclidean space. Solution algorithms are generally constructed using local or global nonlinear optimization techniques. We present a new modelling technique for this problem where, instead of deciding vertex positions, the formulations decide the length of the segments representing the edges in each cycle in the graph, projected in every dimension. We propose an exact formulation and a relaxation based on a Eulerian cycle. We then compare computational results from protein conformation instances obtained with stochastic global optimization techniques on the new cycle-based formulation and on the existing edge-based formulation. While edge-based formulations take less time to reach termination, cycle-based formulations are generally better on solution quality measures. Y1 - 2023 U6 - https://doi.org/10.5802/ojmo.18 VL - 4 ER - TY - GEN A1 - Iommazzo, Gabriele A1 - D'Ambrosio, Claudia A1 - Frangioni, Antonio A1 - Liberti, Leo T1 - Algorithm configuration problem T2 - Encyclopedia of Optimization Y1 - 2022 ER -