TY - GEN A1 - Hiller, Benjamin A1 - Koch, Thorsten A1 - Schewe, Lars A1 - Schwarz, Robert A1 - Schweiger, Jonas T1 - A System to Evaluate Gas Network Capacities: Concepts and Implementation N2 - In 2005 the European Union liberalized the gas market with a disruptive change and decoupled trading of natural gas from its transport. The gas is now transported by independent so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer the maximum possible capacities at each entry and exit such that any resulting gas flow can be realized by the network. The revenue from selling these capacities more than one billion Euro in Germany alone, but overestimating the capacity might compromise the security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This is a report on a large project in mathematical optimization, set out to develop a new toolset for evaluating gas network capacities. The goals and the challenges as they occurred in the project are described, as well as the developments and design decisions taken to meet the requirements. T3 - ZIB-Report - 18-11 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-67438 SN - 1438-0064 N1 - An earlier version of this report is available as ZR 17-03 at https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6193. ER - TY - GEN A1 - Hiller, Benjamin A1 - Koch, Thorsten A1 - Schewe, Lars A1 - Schwarz, Robert A1 - Schweiger, Jonas T1 - A System to Evaluate Gas Network Capacities: Concepts and Implementation N2 - Since 2005, the gas market in the European Union is liberalized and the trading of natural gas is decoupled from its transport. The transport is done by so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer maximum independent capacities at each entry and exit such that the resulting gas flows can be realized by the network without compromising security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This paper gives an overview of the toolset for evaluating gas network capacities that has been developed within the ForNe project, a joint research project of seven research partners initiated by Open Grid Europe, Germany's biggest TSO. While most of the relevant mathematics is described in the book "Evaluating Gas Network Capacities", this article sketches the system as a whole, describes some developments that have taken place recently, and gives some details about the current implementation. T3 - ZIB-Report - 17-03 KW - operations research in energy KW - gas network optimization KW - entry-exit model KW - freely allocable capacity KW - large-scale mixed-integer nonlinear programming Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61931 SN - 1438-0064 N1 - A revised and extended version is available as ZIB-Report 18-11. ER - TY - JOUR A1 - Humpola, Jesco A1 - Joormann, Imke A1 - Oucherif, Djamal A1 - Pfetsch, Marc A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schwarz, Robert T1 - GasLib - A Library of Gas Network Instances JF - Optimization Online N2 - The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances that can be used by researchers in the field of gas transport. The advantages are that researchers save time by using these instances and that different models and algorithms can be compared on the same specified test sets. The library instances are encoded in an XML format. In this paper, we explain this format and present the instances that are available in the library. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57950 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Gollmer, Ralf A1 - Hayn, Christine A1 - Henrion, Rene A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Mirkov, Radoslava A1 - Morsi, Antonio A1 - Römisch, Werner A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Mathematical Optimization for Challenging Network Planning Problems in Unbundled Liberalized Gas Markets N2 - The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor where united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We show that these new paradigms lead to new and challenging mathematical optimization problems. In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed. With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined. T3 - ZIB-Report - 13-13 KW - Gas Market Liberalization KW - Entry-Exit Model KW - Gas Network Access Regulation KW - Mixed-Integer Nonlinear Nonconvex Stochastic Optimization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17821 SN - 1438-0064 ER - TY - GEN A1 - Pfetsch, Marc A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Geißler, Nina A1 - Gollmer, Ralf A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Morsi, Antonio A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Vigerske, Stefan A1 - Willert, Bernhard T1 - Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions N2 - In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously. T3 - ZIB-Report - 12-41 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16531 SN - 1438-0064 ER - TY - GEN A1 - Frank, Martin A1 - Fügenschuh, Armin A1 - Herty, Michael A1 - Schewe, Lars T1 - The Coolest Path Problem N2 - We introduce the coolest path problem, which is a mixture of two well-known problems from distinct mathematical fields. One of them is the shortest path problem from combinatorial optimization. The other is the heat conduction problem from the field of partial differential equations. Together, they make up a control problem, where some geometrical object traverses a digraph in an optimal way, with constraints on intermediate or the final state. We discuss some properties of the problem and present numerical solution techniques. We demonstrate that the problem can be formulated as a linear mixed-integer program. Numerical solutions can thus be achieved within one hour for instances with up to 70 nodes in the graph. T3 - ZIB-Report - 09-37 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11571 SN - 1438-0064 ER -