TY - JOUR A1 - Hildebrandt, Klaus A1 - Polthier, Konrad T1 - Anisotropic filtering of non-linear surface features JF - Computer Graphics Forum Y1 - 2004 VL - 23(3) SP - 391 EP - 400 CY - Grenoble, France ER - TY - JOUR A1 - Kälberer, Felix A1 - Polthier, Konrad A1 - Reitebuch, Ulrich A1 - Wardetzky, Max T1 - Free Lence - Coding with free valences JF - Computer Graphics Forum Y1 - 2005 U6 - https://doi.org/10.1111/j.1467-8659.2005.00872.x VL - 24 IS - Issue 3 SP - 469 EP - 478 ER - TY - JOUR A1 - Lange, Carsten A1 - Polthier, Konrad T1 - Anisotropic fairing of point sets JF - Special Issue of CAGD 2005 Y1 - 2005 U6 - https://doi.org/10.1016/j.cagd.2005.06.010 ER - TY - JOUR A1 - Hildebrandt, Klaus A1 - Schulz, Christian A1 - Tycowicz, Christoph von A1 - Polthier, Konrad T1 - Interactive spacetime control of deformable objects JF - ACM Transactions on Graphics N2 - Creating motions of objects or characters that are physically plausible and follow an animator’s intent is a key task in computer animation. The spacetime constraints paradigm is a valuable approach to this problem, but it suffers from high computational costs. Based on spacetime constraints, we propose a technique that controls the motion of deformable objects and offers an interactive response. This is achieved by a model reduction of the underlying variational problem, which combines dimension reduction, multipoint linearization, and decoupling of ODEs. After a preprocess, the cost for creating or editing a motion is reduced to solving a number of one-dimensional spacetime problems, whose solutions are the wiggly splines introduced by Kass and Anderson [2008]. We achieve interactive response using a new fast and robust numerical scheme for solving a set of one-dimensional problems based on an explicit representation of the wiggly splines. Y1 - 2012 U6 - https://doi.org/10.1145/2185520.2185567 VL - 31 IS - 4 SP - 71:1 EP - 71:8 PB - ACM ER - TY - JOUR A1 - Hildebrandt, Klaus A1 - Schulz, Christian A1 - Tycowicz, Christoph von A1 - Polthier, Konrad T1 - Interactive surface modeling using modal analysis JF - ACM Transactions on Graphics N2 - We propose a framework for deformation-based surface modeling that is interactive, robust and intuitive to use. The deformations are described by a non-linear optimization problem that models static states of elastic shapes under external forces which implement the user input. Interactive response is achieved by a combination of model reduction, a robust energy approximation, and an efficient quasi-Newton solver. Motivated by the observation that a typical modeling session requires only a fraction of the full shape space of the underlying model, we use second and third derivatives of a deformation energy to construct a low-dimensional shape space that forms the feasible set for the optimization. Based on mesh coarsening, we propose an energy approximation scheme with adjustable approximation quality. The quasi-Newton solver guarantees superlinear convergence without the need of costly Hessian evaluations during modeling. We demonstrate the effectiveness of the approach on different examples including the test suite introduced in [Botsch and Sorkine 2008]. Y1 - 2011 U6 - https://doi.org/10.1145/2019627.2019638 VL - 30 IS - 5 SP - 119:1 EP - 119:11 ER - TY - JOUR A1 - Hildebrandt, Klaus A1 - Schulz, Christian A1 - Tycowicz, Christoph von A1 - Polthier, Konrad T1 - Modal Shape Analysis beyond Laplacian JF - Computer Aided Geometric Design N2 - In recent years, substantial progress in shape analysis has been achieved through methods that use the spectra and eigenfunctions of discrete Laplace operators. In this work, we study spectra and eigenfunctions of discrete differential operators that can serve as an alternative to the discrete Laplacians for applications in shape analysis. We construct such operators as the Hessians of surface energies, which operate on a function space on the surface, or of deformation energies, which operate on a shape space. In particular, we design a quadratic energy such that, on the one hand, its Hessian equals the Laplace operator if the surface is a part of the Euclidean plane, and, on the other hand, the Hessian eigenfunctions are sensitive to the extrinsic curvature (e.g. sharp bends) on curved surfaces. Furthermore, we consider eigenvibrations induced by deformation energies, and we derive a closed form representation for the Hessian (at the rest state of the energy) for a general class of deformation energies. Based on these spectra and eigenmodes, we derive two shape signatures. One that measures the similarity of points on a surface, and another that can be used to identify features of surfaces. Y1 - 2012 U6 - https://doi.org/10.1016/j.cagd.2012.01.001 VL - 29 IS - 5 SP - 204 EP - 2018 ER - TY - JOUR A1 - Tycowicz, Christoph von A1 - Kälberer, Felix A1 - Polthier, Konrad T1 - Context-based Coding of Adaptive Multiresolution Meshes JF - Computer Graphics Forum N2 - Multiresolution meshes provide an efficient and structured representation of geometric objects. To increase the mesh resolution only at vital parts of the object, adaptive refinement is widely used. We propose a lossless compression scheme for these adaptive structures that exploits the parent-child relationships inherent to the mesh hierarchy. We use the rules that correspond to the adaptive refinement scheme and store bits only where some freedom of choice is left, leading to compact codes that are free of redundancy. Moreover, we extend the coder to sequences of meshes with varying refinement. The connectivity compression ratio of our method exceeds that of state-of-the-art coders by a factor of 2 to 7. For efficient compression of vertex positions we adapt popular wavelet-based coding schemes to the adaptive triangular and quadrangular cases to demonstrate the compatibility with our method. Akin to state-of-the-art coders, we use a zerotree to encode the resulting coefficients. Using improved context modeling we enhanced the zerotree compression, cutting the overall geometry data rate by 7% below those of the successful Progressive Geometry Compression. More importantly, by exploiting the existing refinement structure we achieve compression factors that are 4 times greater than those of coders which can handle irregular meshes. Y1 - 2011 U6 - https://doi.org/10.1111/j.1467-8659.2011.01972.x VL - 30 IS - 8 SP - 2231 EP - 2245 ER - TY - JOUR A1 - Nava-Yazdani, Esfandiar A1 - Polthier, Konrad T1 - De Casteljau's Algotithm on Manifolds JF - Computer Aided Geometric Design N2 - This paper proposes a generalization of the ordinary de Casteljau algorithm to manifold-valued data including an important special case which uses the exponential map of a symmetric space or Riemannian manifold. We investigate some basic properties of the corresponding Bézier curves and present applications to curve design on polyhedra and implicit surfaces as well as motion of rigid body and positive definite matrices. Moreover, we apply our approach to construct canal and developable surfaces. Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69096 VL - 30 IS - 7 SP - 722 EP - 732 PB - CAGD ER -