TY - JOUR A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - On the exact solution of prize-collecting Steiner tree problems JF - INFORMS Journal on Computing Y1 - 2021 U6 - https://doi.org/10.1287/ijoc.2021.1087 ER - TY - CHAP A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Implications, conflicts, and reductions for Steiner trees T2 - Integer Programming and Combinatorial Optimization: 22th International Conference, IPCO 2021 Y1 - 2021 U6 - https://doi.org/10.1007/978-3-030-73879-2_33 SP - 473 EP - 487 ER - TY - CHAP A1 - Rehfeldt, Daniel A1 - Shinano, Yuji A1 - Koch, Thorsten T1 - SCIP-Jack: An exact high performance solver for Steiner tree problems in graphs and related problems BT - Proceedings of the 7th International Conference on High Performance Scientific Computing T2 - Modeling, Simulation and Optimization of Complex Processes HPSC 2018 N2 - The Steiner tree problem in graphs is one of the classic combinatorial optimization problems. Furthermore, many related problems, such as the rectilinear Steiner tree problem or the maximum-weight connected subgraph problem, have been described in the literature—with a wide range of practical applications. To embrace this wealth of problem classes, the solver SCIP-JACK has been developed as an exact framework for classic Steiner tree and 11 related problems. Moreover, the solver comes with both shared- and distributed memory extensions by means of the UG framework. Besides its versatility, SCIP-JACK is highly competitive for most of the 12 problem classes it can solve, as for instance demonstrated by its top ranking in the recent PACE 2018 Challenge. This article describes the current state of SCIP-JACK and provides up-to-date computational results, including several instances that can now be solved for the first time to optimality. Y1 - 2021 U6 - https://doi.org/10.1007/978-3-030-55240-4_10 PB - Springer ER - TY - GEN A1 - Bestuzheva, Ksenia A1 - Besançon, Mathieu A1 - Chen, Wei-Kun A1 - Chmiela, Antonia A1 - Donkiewicz, Tim A1 - van Doornmalen, Jasper A1 - Eifler, Leon A1 - Gaul, Oliver A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Gottwald, Leona A1 - Graczyk, Christoph A1 - Halbig, Katrin A1 - Hoen, Alexander A1 - Hojny, Christopher A1 - van der Hulst, Rolf A1 - Koch, Thorsten A1 - Lübbecke, Marco A1 - Maher, Stephen J. A1 - Matter, Frederic A1 - Mühmer, Erik A1 - Müller, Benjamin A1 - Pfetsch, Marc E. A1 - Rehfeldt, Daniel A1 - Schlein, Steffan A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Sofranac, Boro A1 - Turner, Mark A1 - Vigerske, Stefan A1 - Wegscheider, Fabian A1 - Wellner, Philipp A1 - Weninger, Dieter A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 8.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 8.0 of the SCIP Optimization Suite. Major updates in SCIP include improvements in symmetry handling and decomposition algorithms, new cutting planes, a new plugin type for cut selection, and a complete rework of the way nonlinear constraints are handled. Additionally, SCIP 8.0 now supports interfaces for Julia as well as Matlab. Further, UG now includes a unified framework to parallelize all solvers, a utility to analyze computational experiments has been added to GCG, dual solutions can be postsolved by PaPILO, new heuristics and presolving methods were added to SCIP-SDP, and additional problem classes and major performance improvements are available in SCIP-Jack. T3 - ZIB-Report - 21-41 KW - Constraint integer programming KW - Linear programming KW - Mixed-integer linear programming KW - Mixed-integer nonlinear programming KW - Optimization solver KW - Branch-and-cut KW - Branch-and-price KW - Column generation KW - Parallelization KW - Mixed-integer semidefinite programming Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85309 SN - 1438-0064 ER -