TY - JOUR A1 - Borndörfer, Ralf A1 - Fügenschuh, Armin A1 - Klug, Torsten A1 - Schang, Thilo A1 - Schlechte, Thomas A1 - Schülldorf, Hanno T1 - The Freight Train Routing Problem for Congested Railway Networks with Mixed Traffic JF - Transportation Science N2 - We consider the following freight train routing problem (FTRP). Given is a transportation network with fixed routes for passenger trains and a set of freight trains (requests), each defined by an origin and destination station pair. The objective is to calculate a feasible route for each freight train such that the sum of all expected delays and all running times is minimal. Previous research concentrated on microscopic train routings for junctions or inside major stations. Only recently approaches were developed to tackle larger corridors or even networks. We investigate the routing problem from a strategic perspective, calculating the routes in a macroscopic transportation network of Deutsche Bahn AG. In this context, macroscopic refers to an aggregation of complex and large real-world structures into fewer network elements. Moreover, the departure and arrival times of freight trains are approximated. The problem has a strategic character since it asks only for a coarse routing through the network without the precise timings. We provide a mixed-integer nonlinear programming (MINLP) formulation for the FTRP, which is a multicommodity flow model on a time-expanded graph with additional routing constraints. The model’s nonlinearities originate from an algebraic approximation of the delays of the trains on the arcs of the network by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model (MILP) by piecewise linear approximation. The latter is solved by a state-of-the art MILP solver for various real-world test instances. Y1 - 2016 U6 - https://doi.org/10.1287/trsc.2015.0656 VL - 50 IS - 2 SP - 408 EP - 423 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Klug, Torsten A1 - Lamorgese, Leonardo A1 - Mannino, Carlo A1 - Reuther, Markus A1 - Schlechte, Thomas T1 - Recent Success Stories on Optimization of Railway Systems N2 - Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway cus- tomers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain devel- oping mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice, with a few notable exceptions. In this paper we address three success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will dis- cuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that math- ematical optimization can support the planning of rolling stock resources. Thus, mathematical models and optimization can lead to a greater effi- ciency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry. T3 - ZIB-Report - 14-47 KW - railway planning KW - railway operations KW - capacity optimization Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-53726 SN - 1438-0064 ER - TY - CHAP A1 - Klug, Torsten A1 - Junosza-Szaniawski, Konstanty A1 - Kwasiborski, Slawomir A1 - Fügenschuh, Armin A1 - Schlechte, Thomas T1 - Fastest, Average and Quantile Schedule T2 - SOFSEM 2015: Theory and Practice of Computer Science N2 - We consider problems concerning the scheduling of a set of trains on a single track. For every pair of trains there is a minimum headway, which every train must wait before it enters the track after another train. The speed of each train is also given. Hence for every schedule - a sequence of trains - we may compute the time that is at least needed for all trains to travel along the track in the given order. We give the solution to three problems: the fastest schedule, the average schedule, and the problem of quantile schedules. The last problem is a question about the smallest upper bound on the time of a given fraction of all possible schedules. We show how these problems are related to the travelling salesman problem. We prove NP-completeness of the fastest schedule problem, NP-hardness of quantile of schedules problem, and polynomiality of the average schedule problem. We also describe some algorithms for all three problems. In the solution of the quantile problem we give an algorithm, based on a reverse search method, generating with polynomial delay all Eulerian multigraphs with the given degree sequence and a bound on the number of such multigraphs. A better bound is left as an open question. KW - scheduling KW - eulerian multigraphs Y1 - 2015 U6 - https://doi.org/10.1007/978-3-662-46078-8_17 SP - 201 EP - 216 PB - Springer Berlin Heidelberg ER -