TY - GEN A1 - Cheung, Kevin K. H. A1 - Gleixner, Ambros A1 - Steffy, Daniel T1 - Verifying Integer Programming Results N2 - Software for mixed-integer linear programming can return incorrect results for a number of reasons, one being the use of inexact floating-point arithmetic. Even solvers that employ exact arithmetic may suffer from programming or algorithmic errors, motivating the desire for a way to produce independently verifiable certificates of claimed results. Due to the complex nature of state-of-the-art MILP solution algorithms, the ideal form of such a certificate is not entirely clear. This paper proposes such a certificate format, illustrating its capabilities and structure through examples. The certificate format is designed with simplicity in mind and is composed of a list of statements that can be sequentially verified using a limited number of simple yet powerful inference rules. We present a supplementary verification tool for compressing and checking these certificates independently of how they were created. We report computational results on a selection of mixed-integer linear programming instances from the literature. To this end, we have extended the exact rational version of the MIP solver SCIP to produce such certificates. T3 - ZIB-Report - 16-58 KW - correctness, verification, proof, certificate, optimality, infeasibility, mixed-integer linear programming Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61044 SN - 1438-0064 ER - TY - CHAP A1 - Cheung, Kevin K. H. A1 - Gleixner, Ambros A1 - Steffy, Daniel T1 - Verifying Integer Programming Results T2 - F. Eisenbrand and J. Koenemann, eds., Integer Programming and Combinatorial Optimization: 19th International Conference, IPCO 2017 N2 - Software for mixed-integer linear programming can return incorrect results for a number of reasons, one being the use of inexact floating-point arithmetic. Even solvers that employ exact arithmetic may suffer from programming or algorithmic errors, motivating the desire for a way to produce independently verifiable certificates of claimed results. Due to the complex nature of state-of-the-art MIP solution algorithms, the ideal form of such a certificate is not entirely clear. This paper proposes such a certificate format designed with simplicity in mind, which is composed of a list of statements that can be sequentially verified using a limited number of inference rules. We present a supplementary verification tool for compressing and checking these certificates independently of how they were created. We report computational results on a selection of MIP instances from the literature. To this end, we have extended the exact rational version of the MIP solver SCIP to produce such certificates. Y1 - 2017 U6 - https://doi.org/10.1007/978-3-319-59250-3_13 VL - 10328 SP - 148 EP - 160 ER -