TY - GEN A1 - Tateiwa, Nariaki A1 - Shinano, Yuji A1 - Yasuda, Masaya A1 - Kaji, Shizuo A1 - Yamamura, Keiichiro A1 - Fujisawa, Katsuki T1 - Massively parallel sharing lattice basis reduction N2 - For cryptanalysis in lattice-based schemes, the performance evaluation of lattice basis reduction using high-performance computers is becoming increasingly important for the determination of the security level. We propose a distributed and asynchronous parallel reduction algorithm based on randomization and DeepBKZ, which is an improved variant of the block Korkine-Zolotarev (BKZ) reduction algorithm. Randomized copies of a lattice basis are distributed to up to 103,680 cores and independently reduced in parallel, while some basis vectors are shared asynchronously among all processes via MPI. There is a trade-off between randomization and information sharing; if a substantial amount of information is shared, all processes will work on the same problem, thereby diminishing the benefit of parallelization. To monitor this balance between randomness and sharing, we propose a metric to quantify the variety of lattice bases. We empirically find an optimal parameter of sharing for high-dimensional lattices. We demonstrate the efficacy of our proposed parallel algorithm and implementation with respect to both performance and scalability through our experiments. T3 - ZIB-Report - 21-38 KW - Discrete optimization KW - Lattice problem KW - Lattice-based cryptography KW - Shortest vector problem KW - Parallel algorithms KW - Ubiquity Generator Framework Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85209 SN - 1438-0064 N1 - under review ER - TY - GEN A1 - Tateiwa, Nariaki A1 - Shinano, Yuji A1 - Yamamura, Keiichiro A1 - Yoshida, Akihiro A1 - Kaji, Shizuo A1 - Yasuda, Masaya A1 - Fujisawa, Katsuki T1 - CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems N2 - Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments. T3 - ZIB-Report - 21-16 KW - Discrete optimization KW - Lattice problem KW - Lattice-based cryptography KW - Shortest vector problem KW - Parallel algorithms KW - Ubiquity Generator Framework Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82802 SN - 1438-0064 N1 - Revised version is accepted to HiPC 2021 ER - TY - CHAP A1 - Tateiwa, Nariaki A1 - Shinano, Yuji A1 - Yamamura, Keiichiro A1 - Yoshida, Akihiro A1 - Kaji, Shizuo A1 - Yasuda, Masaya A1 - Fujisawa, Katsuki T1 - CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems T2 - HiPC 2021 proceedings N2 - Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments. Y1 - 2021 ER - TY - JOUR A1 - Tateiwa, Nariaki A1 - Shinano, Yuji A1 - Yasuda, Masaya A1 - Kaji, Shizuo A1 - Yamamura, Keiichiro A1 - Fujisawa, Katsuki T1 - Development and analysis of massive parallelization of a lattice basis reduction algorithm JF - Japan Journal of Industrial and Applied Mathematics N2 - The security of lattice-based cryptography relies on the hardness of solving lattice problems. Lattice basis reduction is a strong tool for solving lattice problems, and the block Korkine–Zolotarev (BKZ) reduction algorithm is the de facto standard in cryptanalysis. We propose a parallel algorithm of BKZ-type reduction based on randomization. Randomized copies of an input lattice basis are independently reduced in parallel, while several basis vectors are shared asynchronously among all processes. There is a trade-off between randomization and information sharing; if a substantial amount of information is shared, all processes might work on the same problem, which diminishes the benefit of parallelization. To monitor the balance between randomness and sharing, we propose a new metric to quantify the variety of lattice bases, and we empirically find an optimal parameter of sharing for high-dimensional lattices. We also demonstrate the effectiveness of our parallel algorithm and metric through experiments from multiple perspectives. Y1 - 2023 U6 - https://doi.org/10.1007/s13160-023-00580-z VL - 40 IS - 1 SP - 13 EP - 56 ER -