TY - GEN A1 - Hoppmann, Kai T1 - On the Complexity of the Maximum Minimum Cost Flow Problem N2 - Consider a flow network, i.e., a directed graph where each arc has a nonnegative capacity and an associated length, together with nonempty supply-intervals for the sources and nonempty demand-intervals for the sinks. The goal of the Maximum Minimum Cost Flow Problem (MMCF) is to find fixed supply and demand values within these intervals, such that the optimal objective value of the induced Minimum Cost Flow Problem (MCF) is maximized. In this paper, we show that MMCF is APX-hard and remains NP-hard in the uncapacitated case. T3 - ZIB-Report - 19-19 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73359 SN - 1438-0064 ER - TY - GEN A1 - Hennings, Felix A1 - Anderson, Lovis A1 - Hoppmann, Kai A1 - Turner, Mark A1 - Koch, Thorsten T1 - Controlling transient gas flow in real-world pipeline intersection areas N2 - Compressor stations are the heart of every high-pressure gas transport network. Located at intersection areas of the network they are contained in huge complex plants, where they are in combination with valves and regulators responsible for routing and pushing the gas through the network. Due to their complexity and lack of data compressor stations are usually dealt with in the scientific literature in a highly simplified and idealized manner. As part of an ongoing project with one of Germany's largest Transmission System Operators to develop a decision support system for their dispatching center, we investigated how to automatize control of compressor stations. Each station has to be in a particular configuration, leading in combination with the other nearby elements to a discrete set of up to 2000 possible feasible operation modes in the intersection area. Since the desired performance of the station changes over time, the configuration of the station has to adapt. Our goal is to minimize the necessary changes in the overall operation modes and related elements over time, while fulfilling a preset performance envelope or demand scenario. This article describes the chosen model and the implemented mixed integer programming based algorithms to tackle this challenge. By presenting extensive computational results on real world data we demonstrate the performance of our approach. T3 - ZIB-Report - 19-24 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73645 SN - 1438-0064 ER - TY - GEN A1 - Gotzes, Uwe A1 - Hoppmann, Kai T1 - Bounds for the final ranks during a round robin tournament T2 - Operational Research - An International Journal (ORIJ) N2 - This article answers two kinds of questions regarding the Bundesliga which is Germany's primary football (soccer) competition having the highest average stadium attendance worldwide. First "At any point of the season, what final rank will a certain team definitely reach?" and second "At any point of the season, what final rank can a certain team at most reach?". Although we focus especially on the Bundesliga, the models that we use to answer the two questions can easily be adopted to league systems that are similar to that of the Bundesliga. T3 - ZIB-Report - 19-50 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74638 ER - TY - GEN A1 - Hoppmann, Kai A1 - Hennings, Felix A1 - Lenz, Ralf A1 - Gotzes, Uwe A1 - Heinecke, Nina A1 - Spreckelsen, Klaus A1 - Koch, Thorsten T1 - Optimal Operation of Transient Gas Transport Networks T3 - ZIB-Report - 19-23 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73639 SN - 1438-0064 ER -