TY - GEN A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Gollmer, Ralf A1 - Hayn, Christine A1 - Henrion, Rene A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Mirkov, Radoslava A1 - Morsi, Antonio A1 - Römisch, Werner A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Mathematical Optimization for Challenging Network Planning Problems in Unbundled Liberalized Gas Markets N2 - The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor where united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We show that these new paradigms lead to new and challenging mathematical optimization problems. In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed. With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined. T3 - ZIB-Report - 13-13 KW - Gas Market Liberalization KW - Entry-Exit Model KW - Gas Network Access Regulation KW - Mixed-Integer Nonlinear Nonconvex Stochastic Optimization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17821 SN - 1438-0064 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Szabó, Jácint T1 - Gas Network Topology Optimization for Upcoming Market Requirements N2 - Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed. T3 - ZIB-Report - 11-09 KW - Mathematical Optimization KW - Gas Distribution Networks KW - Topology Planning Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12348 ER - TY - JOUR A1 - Pfetsch, Marc A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Geißler, Nina A1 - Gollmer, Ralf A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Morsi, Antonio A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Vigerske, Stefan A1 - Willert, Bernhard T1 - Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions JF - Optimization Methods and Software N2 - In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before. Y1 - 2014 U6 - https://doi.org/10.1080/10556788.2014.888426 PB - Taylor & Francis ER - TY - JOUR A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Gollmer, Ralf A1 - Hayn, Christine A1 - Henrion, René A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Mirkov, Radoslava A1 - Morsi, Antonio A1 - Römisch, Werner A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets JF - Energy Systems N2 - The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor were united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We discuss how these changing paradigms lead to new and challenging mathematical optimization problems. This includes the validation of nominations, that asks for the decision if the network’s capacity is sufficient to transport a specific amount of flow, the verification of booked capacities and the detection of available freely allocable capacities, and the topological extension of the network with new pipelines or compressors in order to increase its capacity. In order to solve each of these problems and to provide meaningful results for the practice, a mixture of different mathematical aspects have to be addressed, such as combinatorics, stochasticity, uncertainty, and nonlinearity. Currently, no numerical solver is available that can deal with such blended problems out-of-the-box. The main goal of our research is to develop such a solver, that moreover is able to solve instances of realistic size. In this article, we describe the main ingredients of our prototypical software implementations. Y1 - 2013 U6 - https://doi.org/10.1007/s12667-013-0099-8 VL - 5 IS - 3 SP - 449 EP - 473 PB - Springer Berlin Heidelberg CY - Berlin ER - TY - CHAP A1 - Fügenschuh, Armin A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Szabo, Jacint T1 - Gas Network Topology Optimization for Upcoming Market Requirements T2 - International Conference on the European Energy Market (EEM) N2 - Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed. Y1 - 2011 U6 - https://doi.org/10.1109/EEM.2011.5953035 SP - 346 EP - 351 ER - TY - CHAP A1 - Martin, Alexander A1 - Geißler, Björn A1 - Heyn, Christine A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Morsi, Antonio A1 - Pfetsch, Marc A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Optimierung Technischer Kapazitäten in Gasnetzen T2 - Optimierung in der Energiewirtschaft Y1 - 2011 SP - 105 EP - 114 PB - VDI-Verlag, Düsseldorf ER - TY - CHAP A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Lehmann, Thomas A1 - Lenz, Ralf A1 - Morsi, Antonio A1 - Pfetsch, Marc A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Willert, Bernhard T1 - Computational results for validation of nominations T2 - Evaluating Gas Network Capacities N2 - The different approaches to solve the validation of nomination problem presented in the previous chapters are evaluated computationally in this chapter. Each approach is analyzed individually, as well as the complete solvers for these problems. We demonstrate that the presented approaches can successfully solve large-scale real-world instances. Y1 - 2015 SN - 9781611973686 VL - SIAM-MOS series on Optimization ER - TY - CHAP A1 - Humpola, Jesco A1 - Fügenschuh, Armin A1 - Hiller, Benjamin A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Lenz, Ralf A1 - Schwarz, Robert A1 - Schweiger, Jonas T1 - The Specialized MINLP Approach T2 - Evaluating Gas Network Capacities N2 - We propose an approach to solve the validation of nominations problem using mixed-integer nonlinear programming (MINLP) methods. Our approach handles both the discrete settings and the nonlinear aspects of gas physics. Our main contribution is an innovative coupling of mixed-integer (linear) programming (MILP) methods with nonlinear programming (NLP) that exploits the special structure of a suitable approximation of gas physics, resulting in a global optimization method for this type of problem. Y1 - 2015 SN - 9781611973686 VL - SIAM-MOS series on Optimization ER - TY - CHAP A1 - Hayn, Christine A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Schewe, Lars A1 - Schweiger, Jonas A1 - Spreckelsen, Klaus T1 - Perspectives T2 - Evaluating Gas Network Capacities N2 - After we discussed approaches to validate nominations and to verify bookings, we consider possible future research paths. This includes determining technical capacities and planning of network extensions. Y1 - 2015 SN - 9781611973686 VL - SIAM-MOS series on Optimization ER - TY - GEN A1 - Pfetsch, Marc A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Geißler, Nina A1 - Gollmer, Ralf A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Morsi, Antonio A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Vigerske, Stefan A1 - Willert, Bernhard T1 - Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions N2 - In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously. T3 - ZIB-Report - 12-41 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16531 SN - 1438-0064 ER -