TY - JOUR A1 - Becker, Fabian A1 - Djurdjevac Conrad, Natasa A1 - Eser, Raphael A. A1 - Helfmann, Luzie A1 - Schütt, Brigitta A1 - Schütte, Christof A1 - Zonker, Johannes T1 - The Furnace and the Goat—A spatio-temporal model of the fuelwood requirement for iron metallurgy on Elba Island, 4th century BCE to 2nd century CE JF - PLOS ONE Y1 - 2020 UR - https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241133 U6 - https://doi.org/10.1371/journal.pone.0241133 VL - 15 SP - 1 EP - 37 PB - Public Library of Science ER - TY - JOUR A1 - Djurdjevac Conrad, Natasa A1 - Helfmann, Luzie A1 - Zonker, Johannes A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - Human mobility and innovation spreading in ancient times: a stochastic agent-based simulation approach JF - EPJ Data Science N2 - Human mobility always had a great influence on the spreading of cultural, social and technological ideas. Developing realistic models that allow for a better understanding, prediction and control of such coupled processes has gained a lot of attention in recent years. However, the modeling of spreading processes that happened in ancient times faces the additional challenge that available knowledge and data is often limited and sparse. In this paper, we present a new agent-based model for the spreading of innovations in the ancient world that is governed by human movements. Our model considers the diffusion of innovations on a spatial network that is changing in time, as the agents are changing their positions. Additionally, we propose a novel stochastic simulation approach to produce spatio-temporal realizations of the spreading process that are instructive for studying its dynamical properties and exploring how different influences affect its speed and spatial evolution. Y1 - 2018 U6 - https://doi.org/10.1140/epjds/s13688-018-0153-9 VL - 7 IS - 1 PB - EPJ Data Science ET - EPJ Data Science ER - TY - JOUR A1 - Winkelmann, Stefanie A1 - Zonker, Johannes A1 - Schütte, Christof A1 - Djurdjevac Conrad, Natasa T1 - Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading JF - Mathematical Biosciences N2 - Agent based models (ABMs) are a useful tool for modeling spatio-temporal population dynamics, where many details can be included in the model description. Their computational cost though is very high and for stochastic ABMs a lot of individual simulations are required to sample quantities of interest. Especially, large numbers of agents render the sampling infeasible. Model reduction to a metapopulation model leads to a significant gain in computational efficiency, while preserving important dynamical properties. Based on a precise mathematical description of spatio-temporal ABMs, we present two different metapopulation approaches (stochastic and piecewise deterministic) and discuss the approximation steps between the different models within this framework. Especially, we show how the stochastic metapopulation model results from a Galerkin projection of the underlying ABM onto a finite-dimensional ansatz space. Finally, we utilize our modeling framework to provide a conceptual model for the spreading of COVID-19 that can be scaled to real-world scenarios. Y1 - 2021 U6 - https://doi.org/10.1016/j.mbs.2021.108619 VL - 336 PB - Elsevier ER - TY - JOUR A1 - Djurdjevac Conrad, Natasa A1 - Fuerstenau, Daniel A1 - Grabundzija, Ana A1 - Helfmann, Luzie A1 - Park, Martin A1 - Schier, Wolfram A1 - Schütt, Brigitta A1 - Schütte, Christof A1 - Weber, Marcus A1 - Wulkow, Niklas A1 - Zonker, Johannes T1 - Mathematical modeling of the spreading of innovations in the ancient world JF - eTopoi. Journal for Ancient Studies Y1 - 2018 U6 - https://doi.org/10.17171/4-7-1 SN - ISSN 2192-2608 VL - 7 ER - TY - THES A1 - Zonker, Johannes T1 - Coarse Graining of Agent-Based Models and Spatio-Temporal Modeling of Spreading Processes Y1 - 2023 UR - http://dx.doi.org/10.17169/refubium-41220 ER - TY - JOUR A1 - Zonker, Johannes A1 - Padilla-Iglesias, Cecilia A1 - Djurdjevac Conrad, Natasa T1 - Insights into drivers of mobility and cultural dynamics of African hunter-gatherers over the past 120 000 years JF - Royal Society Open Science N2 - Humans have a unique capacity to innovate, transmit and rely on complex, cumulative culture for survival. While an important body of work has attempted to explore the role of changes in the size and interconnectedness of populations in determining the persistence, diversity and complexity of material culture, results have achieved limited success in explaining the emergence and spatial distribution of cumulative culture over our evolutionary trajectory. Here, we develop a spatio-temporally explicit agent-based model to explore the role of environmentally driven changes in the population dynamics of hunter–gatherer communities in allowing the development, transmission and accumulation of complex culture. By modelling separately demography- and mobility-driven changes in interaction networks, we can assess the extent to which cultural change is driven by different types of population dynamics. We create and validate our model using empirical data from Central Africa spanning 120 000 years. We find that populations would have been able to maintain diverse and elaborate cultural repertoires despite abrupt environmental changes and demographic collapses by preventing isolation through mobility. However, we also reveal that the function of cultural features was also an essential determinant of the effects of environmental or demographic changes on their dynamics. Our work can therefore offer important insights into the role of a foraging lifestyle on the evolution of cumulative culture. Y1 - 2023 U6 - https://doi.org/10.1098/rsos.230495 VL - 10 IS - 11 ER - TY - GEN A1 - Zonker, Johannes A1 - Padilla-Iglesias, Cecilia A1 - Djurdjevac Conrad, Natasa T1 - Supplementary code and data for Royal Society Open Science Manuscript rsos.230495 N2 - In this repository are all files necessary to run the agent-based model of the paper "Insights into drivers of mobility and cultural dynamics of African hunter–gatherers over the past 120 000 years", Royal Society Open Science, 10(11), 2023. Y1 - 2023 U6 - https://doi.org/10.12752/9254 ER -