TY - CHAP A1 - Götschel, Sebastian A1 - Höhne, Christian A1 - Kolkoori, Sanjeevareddy A1 - Mitzscherling, Steffen A1 - Prager, Jens A1 - Weiser, Martin T1 - Ray Tracing Boundary Value Problems: Simulation and SAFT Reconstruction for Ultrasonic Testing T2 - Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016) Y1 - 2016 UR - https://www.wcndt2016.com/portals/wcndt/bb/Fr1H4.pdf ER - TY - GEN A1 - Götschel, Sebastian A1 - Höhne, Christian A1 - Kolkoori, Sanjeevareddy A1 - Mitzscherling, Steffen A1 - Prager, Jens A1 - Weiser, Martin T1 - Ray Tracing Boundary Value Problems: Simulation and SAFT Reconstruction for Ultrasonic Testing N2 - The application of advanced imaging techniques for the ultrasonic inspection of inhomogeneous anisotropic materials like austenitic and dissimilar welds requires information about acoustic wave propagation through the material, in particular travel times between two points in the material. Forward ray tracing is a popular approach to determine traveling paths and arrival times but is ill suited for inverse problems since a large number of rays have to be computed in order to arrive at prescribed end points. In this contribution we discuss boundary value problems for acoustic rays, where the ray path between two given points is determined by solving the eikonal equation. The implementation of such a two point boundary value ray tracer for sound field simulations through an austenitic weld is described and its efficiency as well as the obtained results are compared to those of a forward ray tracer. The results are validated by comparison with experimental results and commercially available UT simulation tools. As an application, we discuss an implementation of the method for SAFT (Synthetic Aperture Focusing Technique) reconstruction. The ray tracer calculates the required travel time through the anisotropic columnar grain structure of the austenitic weld. There, the formulation of ray tracing as a boundary value problem allows a straightforward derivation of the ray path from a given transducer position to any pixel in the reconstruction area and reduces the computational cost considerably. T3 - ZIB-Report - 16-14 KW - ray tracing KW - ODE boundary value problems KW - ultrasonics KW - nondestructive testing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-58386 UR - https://www.wcndt2016.com/portals/wcndt/bb/Fr1H4.pdf SN - 1438-0064 ER -