TY - CHAP A1 - Riedmüller, Stephanie A1 - Buchholz, Annika A1 - Zittel, Janina T1 - Enhancing Multi-Energy Modeling: The Role of Mixed-Integer Optimization Decisions T2 - The 38th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems – ECOS 2025 N2 - The goal to decarbonize the energy sector has led to increased research in modeling and optimizing multi-energy systems. One of the most promising and popular techniques for modeling and solving (multi-)energy optimization problems is (multi-objective) mixed-integer programming, valued for its ability to represent the complexities of integrated energy systems. While the literature often focuses on deriving mathematical formulations and parameter settings, less attention is given to critical post-formulation decisions. Modeling multi-energy systems as mixed-integer linear optimization programs demands decisions across multiple degrees of freedom. Key steps include reducing a real-world multi energy network into an abstract topology, defining variables, formulating the relevant (in-)equalities to represent technical requirements, setting (multiple) objectives, and integrating these elements into a mixed-integer program (MIP). However, with these elements fixed, the specific transformation of the abstract topology into a graph structure and the construction of the MIP remain non-uniquely. These choices can significantly impact user-friendliness, problem size, and computational efficiency, thus affecting the feasibility and efficiency of modeling efforts. In this work, we identify and analyze the additional degrees of freedom and describe two distinct approaches to address them. The approaches are compared regarding mathematical equivalence, suitability for solution algorithms, and clarity of the underlying topology. A case study on a realistic subarea of Berlin’s district heating network involving tri-objective optimization for a unit commitment problem demonstrates the practical significance of these decisions. By highlighting these critical yet often overlooked aspects, our work equips energy system modelers with insights to improve computational efficiency, scalability, and interpretability in their optimization efforts, ultimately enhancing the practicality and effectiveness of multi-energy system models. Y1 - 2025 ER - TY - JOUR A1 - Petkovic, Milena A1 - Zittel, Janina T1 - Leveraging Transfer Learning to Overcome Data Limitations in Czochralski Crystal Growth JF - Advanced Theory and Simulations Y1 - 2025 U6 - https://doi.org/10.1002/adts.202500677 VL - 8 IS - 11 ER - TY - CHAP A1 - Muschner, Christoph A1 - Yüksel-Ergün, Inci A1 - Gering, Marie-Claire A1 - Bartoszuk, Karolina A1 - Haas, Sabine A1 - Zittel, Janina T1 - Sensitivity analysis of the energy transition path in the Berlin-Brandenburg area to uncertainties in operational and investment costs of diverse energy production technologies T2 - 37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2024) N2 - The investigation of energy transition paths toward a sustainable and decarbonized future under uncertainty is a critical aspect of contemporary energy planning and policy development. There are numerous methods for analysing uncertainties and sensitivities and many studies on sustainable transformation paths, but there is a lack of combined application to relevant use-cases. In this study, we investigate the sensitivity of energy transition paths to uncertainties in operational and investment costs of power plants in the metropolitan area of Berlin and its rural surroundings. By employing the linear programming energy system model oemof-B3, we extensively focus on the system's energy technologies, such as wind turbines, photovoltaics, hydro and combustion plants, and energy storages. Greenhouse gas reduction and electrification rates per commodity are realized by selected constraints. Our research aims to discern how investments in energy production capacities are influenced by uncertainties of other energy technologies' investment and operational costs in the system. We apply a quantitative approach to investigate such interdependencies of cost variations and their impact on long-term energy planning. Thus, the analysis sheds light on the robustness of energy transition paths in the face of these uncertainties. The region Berlin-Brandenburg serves as a case study and thus reflects on the present space conflicts to meet energy demands in urban and suburban areas and their rural surroundings. An electricity-intensive scenario is selected that assumes a 100 % reduction in greenhouse gas emissions by 2050. With the results of the case study, we show how our approach enables rural and metropolitan decision-makers to collaborate in achieving sustainable energy. Decision-making in long-term energy planning can be made more robust and flexible by acknowledging the identified sensitivities and enable such regions better to navigate challenges and uncertainties associated with sustainable energy planning. Y1 - 2024 U6 - https://doi.org/10.52202/077185-0115 SP - 1339 EP - 1350 ER - TY - JOUR A1 - Pedersen, Jaap A1 - Le, Thi Thai A1 - Koch, Thorsten A1 - Zittel, Janina T1 - Optimal discrete pipe sizing for tree-shaped CO2 networks JF - OR Spectrum N2 - For industries like the cement industry, switching to a carbon-neutral production process is impossible. They must rely on carbon capture, utilization and storage (CCUS) technologies to reduce their production processes’ inevitable carbon dioxide (CO2) emissions. For transporting continuously large amounts of CO2, utilizing a pipeline network is the most effective solution; however, building such a network is expensive. Therefore minimizing the cost of the pipelines to be built is extremely important to make the operation financially feasible. In this context, we investigate the problem of finding optimal pipeline diameters from a discrete set of diameters for a tree-shaped network transporting captured CO2 from multiple sources to a single sink. The general problem of optimizing arc capacities in potential-based fluid networks is already a challenging mixed-integer nonlinear optimization problem. The problem becomes even more complex when adding the highly sensitive nonlinear behavior of CO2 regarding temperature and pressure changes. We propose an iterative algorithm splitting the problem into two parts: a) the pipe-sizing problem under a fixed supply scenario and temperature distribution and b) the thermophysical modeling, including mixing effects, the Joule-Thomson effect, and heat exchange with the surrounding environment. We demonstrate the effectiveness of our approach by applying our algorithm to a real-world network planning problem for a CO2 network in Western Germany. Further, we show the robustness of the algorithm by solving a large artificially created set of network instances. Y1 - 2024 U6 - https://doi.org/10.1007/s00291-024-00773-z VL - 46 SP - 1163 EP - 1187 ER - TY - CHAP A1 - Zittel, Janina A1 - Clarner, Jan-Patrick A1 - Tawfik, Christine A1 - Dykes, Maxwell A1 - Rivetta, Fabian A1 - Riedmüller, Stephanie T1 - A multi-objective optimization strategy for district heating production portfolio planning T2 - 37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2024) N2 - The imperative to decarbonize energy systems has intensified the need for efficient transformations within the heating sector, with a particular focus on district heating networks. This study addresses this challenge by proposing a comprehensive optimization approach evaluated on the district heating network of the Märkisches Viertel of Berlin. Our objective is to simultaneously optimize heat production with three targets: minimizing costs, minimizing CO2-emissions, and maximizing heat generation from Combined Heat and Power (CHP) plants for enhanced efficiency. To tackle this optimization problem, we employed a Mixed-Integer Linear Program (MILP) that encompasses the conversion of various fuels into heat and power, integration with relevant markets, and considerations for technical constraints on power plant operation. These constraints include startup and minimum downtime, activation costs, and storage limits. The ultimate goal is to delineate the Pareto front, representing the optimal trade-offs between the three targets. We evaluate variants of the 𝜖-constraint algorithm for their effectiveness in coordinating these objectives, with a simultaneous focus on the quality of the estimated Pareto front and computational efficiency. One algorithm explores solutions on an evenly spaced grid in the objective space, while another dynamically adjusts the grid based on identified solutions. Initial findings highlight the strengths and limitations of each algorithm, providing guidance on algorithm selection depending on desired outcomes and computational constraints. Our study emphasizes that the optimal choice of algorithm hinges on the density and distribution of solutions in the feasible space. Whether solutions are clustered or evenly distributed significantly influences algorithm performance. These insights contribute to a nuanced understanding of algorithm selection for multi-objective multi-energy system optimization, offering valuable guidance for future research and practical applications for planning sustainable district heating networks. Y1 - 2024 U6 - https://doi.org/10.52202/077185-0066 SP - 764 EP - 775 ER - TY - GEN A1 - Cao, Karl-Kien A1 - Anderson, Lovis A1 - Böhme, Aileen A1 - Breuer, Thomas A1 - Buschmann, Jan A1 - Fiand, Frederick A1 - Frey, Ulrich A1 - Fuchs, Benjamin A1 - Kempe, Nils-Christian A1 - von Krbek, Kai A1 - Medjroubi, Wided A1 - Riehm, Judith A1 - Sasanpour, Shima A1 - Simon, Sonja A1 - Vanaret, Charlie A1 - Wetzel, Manuel A1 - Xiao, Mengzhu A1 - Zittel, Janina T1 - Evaluation of Uncertainties in Linear-Optimizing Energy System Models - Compendium T2 - DLR-Forschungsbericht N2 - Für die Energiesystemforschung sind Software-Modelle ein Kernelement zur Analyse von Szenarien. Das Forschungsprojekt UNSEEN hatte das Ziel eine bisher unerreichte Anzahl an modellbasierten Energieszenarien zu berechnen, um Unsicherheiten – vor allem unter Nutzung linear optimierender Energiesystem-Modelle - besser bewerten zu können. Hierfür wurden umfangreiche Parametervariationen auf Energieszenarien angewendet und das wesentliche methodische Hindernis in diesem Zusammenhang adressiert: die rechnerische Beherrschbarkeit der zu lösenden mathematischen Optimierungsprobleme. Im Vorläuferprojekt BEAM-ME wurde mit der Entwicklung und Anwendung des Open-Source-Lösers PIPS-IPM++ die Grundlage für den Einsatz von High-Performance-Computing (HPC) zur Lösung dieser Modelle gelegt. In UNSEEN war dieser Löser die zentrale Komponente eines Workflows, welcher zur Generierung, Lösung und multi-kriteriellen Bewertung von Energieszenarien auf dem Hochleistungscomputer JUWELS am Forschungszentrum Jülich implementiert wurde. Zur effizienten Generierung und Kommunikation von Modellinstanzen für Methoden der mathematischen Optimierung auf HPC wurde eine weitere Workflow-Komponente von der GAMS Software GmbH entwickelt: der Szenariogenerator. Bei der Weiterentwicklung von Lösungsalgorithmen für linear optimierende Energie-Systemmodelle standen gemischt-ganzzahlige Optimierungsprobleme im Fokus, welche für die Modellierung konkreter Infrastrukturen und Maßnahmen zur Umsetzung der Energiewende gelöst werden müssen. Die in diesem Zusammenhang stehenden Arbeiten zur Entwicklung von Algorithmen wurden von der Technischen Universität Berlin verantwortet. Bei Design und Implementierung dieser Methoden wurde sie vom Zuse Instituts Berlin unterstützt. Y1 - 2023 U6 - https://doi.org/10.57676/w2rq-bj85 IS - DLR-FB-2023-15 ER - TY - JOUR A1 - Petkovic, Milena A1 - Chen, Ying A1 - Gamrath, Inken A1 - Gotzes, Uwe A1 - Hadjidimitrou, Natalia Selini A1 - Zittel, Janina A1 - Xu, Xiaofei A1 - Koch, Thorsten T1 - A hybrid approach for high precision prediction of gas flows JF - Energy Systems N2 - About 23% of the German energy demand is supplied by natural gas. Additionally, for about the same amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by transmissions system operators (TSOs). The number one priority of the TSOs is to ensure the security of supply. However, the TSOs have only very limited knowledge about the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany’s largest TSO, operates a high-pressure transport network of about 12,000 km length. With the introduction of peak-load gas power stations, it is of great importance to predict in- and out-flow of the network to ensure the necessary flexibility and security of supply for the German Energy Transition (“Energiewende”). In this paper, we introduce a novel hybrid forecast method applied to gas flows at the boundary nodes of a transport network. This method employs an optimized feature selection and minimization. We use a combination of a FAR, LSTM and mathematical programming to achieve robust high-quality forecasts on real-world data for different types of network nodes. Y1 - 2022 U6 - https://doi.org/10.1007/s12667-021-00466-4 VL - 13 SP - 383 EP - 408 ER - TY - CHAP A1 - Pedersen, Jaap A1 - Hoppmann-Baum, Kai A1 - Zittel, Janina A1 - Koch, Thorsten T1 - Blending hydrogen into natural gas: An assessment of the capacity of the German gas grid T2 - Operations Research Proceedings 2021 N2 - In the transition towards a pure hydrogen infrastructure, repurposing the existing natural gas infrastructure is considered. In this study, the maximal technically feasible injection of hydrogen into the existing German natural gas transmission network is analysed with respect to regulatory limits regarding the gas quality. We propose a transient tracking model based on the general pooling problem including linepack. The analysis is conducted using real-world hourly gas flow data on a network of about 10,000 km length. Y1 - 2022 U6 - https://doi.org/https://doi.org/10.1007/978-3-031-08623-6_28 SP - 182 EP - 187 ER - TY - JOUR A1 - Petkovic, Milena A1 - Koch, Thorsten A1 - Zittel, Janina T1 - Deep learning for spatio-temporal supply anddemand forecasting in natural gas transmission networks JF - Energy Science and Engineering N2 - Germany is the largest market for natural gas in the European Union, with an annual consumption of approx. 95 billion cubic meters. Germany's high-pressure gas pipeline network is roughly 40,000 km long, which enables highly fluctuating quantities of gas to be transported safely over long distances. Considering that similar amounts of gas are also transshipped through Germany to other EU states, it is clear that Germany's gas transport system is essential to the European energy supply. Since the average velocity of gas in a pipeline is only 25km/h, an adequate high-precision, high-frequency forecasting of supply and demand is crucial for efficient control and operation of such a transmission network. We propose a deep learning model based on spatio-temporal convolutional neural networks (DLST) to tackle the problem of gas flow forecasting in a complex high-pressure transmission network. Experiments show that our model effectively captures comprehensive spatio-temporal correlations through modeling gas networks and consistently outperforms state-of-the-art benchmarks on real-world data sets by at least 21%. The results demonstrate that the proposed model can deal with complex nonlinear gas network flow forecasting with high accuracy and effectiveness. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1002/ese3.932 ER - TY - CHAP A1 - Riedmüller, Stephanie A1 - Rivetta, Fabian A1 - Zittel, Janina T1 - Long-Term Multi-Objective Optimization for Integrated Unit Commitment and Investment Planning for District Heating Networks BT - Selected Papers of the International Conference of the German, Austrian and Swiss Operations Research Societies (GOR, ÖGOR, SVOR/ASRO), Munich, Germany, September 3-6, 2024 T2 - Operations Research Proceedings 2024 N2 - The need to decarbonize the energy system has intensified the focus on district heating networks in urban and suburban areas. Therefore, exploring transformation pathways with reasonable trade-offs between economic viability and environmental goals became necessary. We introduce a network-flow-based model class integrating unit commitment and long-term investment planning for multi-energy systems. While the integration of unit commitment and investment planning has been applied to multi-energy systems, a formal introduction and suitability for the application of long-term portfolio planning of an energy provider on an urban scale has yet to be met. Based on mixed integer linear programming, the model bridges the gap between overly detailed industrial modeling tools not designed for computational efficiency at scale and rather abstract academic models. The formulation is tested on Berlin’s district heating network. Hence, the challenge lies in a large number of variables and constraints and the coupling of time steps, for example, through investment decisions. A case study explores different solutions on the Pareto front defined by optimal trade-offs between minimizing costs and CO2 emissions through a lexicographic optimization approach. The resulting solution catalog can provide decision-makers valuable insights into feasible transformation pathways, highlighting distinctions between robust and target-dependent investments. Y1 - 2025 U6 - https://doi.org/10.1007/978-3-031-92575-7_33 SP - 235 EP - 241 PB - Springer Cham ER -