TY - GEN A1 - Hoppmann-Baum, Kai A1 - Hennings, Felix A1 - Zittel, Janina A1 - Gotzes, Uwe A1 - Spreckelsen, Eva-Maria A1 - Spreckelsen, Klaus A1 - Koch, Thorsten T1 - From Natural Gas towards Hydrogen - A Feasibility Study on Current Transport Network Infrastructure and its Technical Control N2 - This study examines the usability of a real-world, large-scale natural gas transport infrastructure for hydrogen transport. We investigate whether a converted network can transport the amounts of hydrogen necessary to satisfy current energy demands. After introducing an optimization model for the robust transient control of hydrogen networks, we conduct computational experiments based on real-world demand scenarios. Using a representative network, we demonstrate that replacing each turbo compressor unit by four parallel hydrogen compressors, each of them comprising multiple serial compression stages, and imposing stricter rules regarding the balancing of in- and outflow suffices to realize transport in a majority of scenarios. However, due to the reduced linepack there is an increased need for technical and non-technical measures leading to a more dynamic network control. Furthermore, the amount of energy needed for compression increases by 364% on average. T3 - ZIB-Report - 20-27 KW - Hydrogen Transport KW - Hydrogen Infrastructure KW - Network Flows KW - Mixed Integer Programming KW - Energiewende Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-79901 SN - 1438-0064 ER - TY - GEN A1 - Hennings, Felix A1 - Hoppmann-Baum, Kai A1 - Zittel, Janina T1 - Optimizing transient gas network control for challenging real-world instances using MIP-based heuristics N2 - Optimizing the transient control of gas networks is a highly challenging task. The corresponding model incorporates the combinatorial complexity of determining the settings for the many active elements as well as the non-linear and non-convex nature of the physical and technical principles of gas transport. In this paper, we present the latest improvements of our ongoing work to solve this problem for real-world, large-scale problem instances: By adjusting our mixed-integer non-linear programming model regarding the gas compression capabilities in the network, we reflect the technical limits of the underlying units more accurately while maintaining a similar overall model size. In addition, we introduce a new algorithmic approach that is based on splitting the complexity of the problem by first finding assignments for discrete variables and then determining the continuous variables as locally optimal solution of the corresponding non-linear program. For the first task, we design multiple different heuristics based on concepts for general time-expanded optimization problems that find solutions by solving a sequence of sub-problems defined on reduced time horizons. To demonstrate the competitiveness of our approach, we test our algorithm on particularly challenging historic demand scenarios. The results show that high-quality solutions are obtained reliably within short solving times, making the algorithm well-suited to be applied at the core of time-critical industrial applications. T3 - ZIB-Report - 22-08 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-86842 SN - 1438-0064 ER - TY - GEN A1 - Hennings, Felix A1 - Anderson, Lovis A1 - Hoppmann, Kai A1 - Turner, Mark A1 - Koch, Thorsten T1 - Controlling transient gas flow in real-world pipeline intersection areas N2 - Compressor stations are the heart of every high-pressure gas transport network. Located at intersection areas of the network they are contained in huge complex plants, where they are in combination with valves and regulators responsible for routing and pushing the gas through the network. Due to their complexity and lack of data compressor stations are usually dealt with in the scientific literature in a highly simplified and idealized manner. As part of an ongoing project with one of Germany's largest Transmission System Operators to develop a decision support system for their dispatching center, we investigated how to automatize control of compressor stations. Each station has to be in a particular configuration, leading in combination with the other nearby elements to a discrete set of up to 2000 possible feasible operation modes in the intersection area. Since the desired performance of the station changes over time, the configuration of the station has to adapt. Our goal is to minimize the necessary changes in the overall operation modes and related elements over time, while fulfilling a preset performance envelope or demand scenario. This article describes the chosen model and the implemented mixed integer programming based algorithms to tackle this challenge. By presenting extensive computational results on real world data we demonstrate the performance of our approach. T3 - ZIB-Report - 19-24 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73645 SN - 1438-0064 ER - TY - GEN A1 - Hoppmann, Kai A1 - Hennings, Felix A1 - Lenz, Ralf A1 - Gotzes, Uwe A1 - Heinecke, Nina A1 - Spreckelsen, Klaus A1 - Koch, Thorsten T1 - Optimal Operation of Transient Gas Transport Networks T3 - ZIB-Report - 19-23 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73639 SN - 1438-0064 ER -