TY - JOUR A1 - Herter, Felix A1 - Hege, Hans-Christian A1 - Hadwiger, Markus A1 - Lepper, Verena A1 - Baum, Daniel T1 - Thin-Volume Visualization on Curved Domains JF - Computer Graphics Forum N2 - Thin, curved structures occur in many volumetric datasets. Their analysis using classical volume rendering is difficult because parts of such structures can bend away or hide behind occluding elements. This problem cannot be fully compensated by effective navigation alone, because structure-adapted navigation in the volume is cumbersome and only parts of the structure are visible in each view. We solve this problem by rendering a spatially transformed view into the volume so that an unobscured visualization of the entire curved structure is obtained. As a result, simple and intuitive navigation becomes possible. The domain of the spatial transform is defined by a triangle mesh that is topologically equivalent to an open disc and that approximates the structure of interest. The rendering is based on ray-casting in which the rays traverse the original curved sub-volume. In order to carve out volumes of varying thickness, the lengths of the rays as well as the position of the mesh vertices can be easily modified in a view-controlled manner by interactive painting. We describe a prototypical implementation and demonstrate the interactive visual inspection of complex structures from digital humanities, biology, medicine, and materials science. Displaying the structure as a whole enables simple inspection of interesting substructures in their original spatial context. Overall, we show that transformed views utilizing ray-casting-based volume rendering supported by guiding surface meshes and supplemented by local, interactive modifications of ray lengths and vertex positions, represent a simple but versatile approach to effectively visualize thin, curved structures in volumetric data. Y1 - 2021 U6 - https://doi.org/10.1111/cgf.14296 VL - 40 IS - 3 SP - 147 EP - 157 PB - Wiley-Blackwell Publishing Ltd. CY - United Kingdom ER - TY - JOUR A1 - Nava-Yazdani, Esfandiar A1 - Hege, Hans-Christian A1 - von Tycowicz, Christoph T1 - A Hierarchical Geodesic Model for Longitudinal Analysis on Manifolds JF - Journal of Mathematical Imaging and Vision N2 - In many applications, geodesic hierarchical models are adequate for the study of temporal observations. We employ such a model derived for manifold-valued data to Kendall's shape space. In particular, instead of the Sasaki metric, we adapt a functional-based metric, which increases the computational efficiency and does not require the implementation of the curvature tensor. We propose the corresponding variational time discretization of geodesics and employ the approach for longitudinal analysis of 2D rat skulls shapes as well as 3D shapes derived from an imaging study on osteoarthritis. Particularly, we perform hypothesis test and estimate the mean trends. Y1 - 2022 U6 - https://doi.org/10.1007/s10851-022-01079-x VL - 64 IS - 4 SP - 395 EP - 407 ER - TY - JOUR A1 - Udvary, Daniel A1 - Harth, Philipp A1 - Macke, Jakob H. A1 - Hege, Hans-Christian A1 - de Kock, Christiaan P. J. A1 - Sakmann, Bert A1 - Oberlaender, Marcel T1 - A Theory for the Emergence of Neocortical Network Architecture JF - BioRxiv Y1 - 2020 U6 - https://doi.org/https://doi.org/10.1101/2020.11.13.381087 ER - TY - JOUR A1 - Hanik, Martin A1 - Ducke, Benjamin A1 - Hege, Hans-Christian A1 - Fless, Friederike A1 - von Tycowicz, Christoph T1 - Intrinsic shape analysis in archaeology: A case study on ancient sundials JF - Journal on Computing and Cultural Heritage N2 - The fact that the physical shapes of man-made objects are subject to overlapping influences—such as technological, economic, geographic, and stylistic progressions—holds great information potential. On the other hand, it is also a major analytical challenge to uncover these overlapping trends and to disentagle them in an unbiased way. This paper explores a novel mathematical approach to extract archaeological insights from ensembles of similar artifact shapes. We show that by considering all shape information in a find collection, it is possible to identify shape patterns that would be difficult to discern by considering the artifacts individually or by classifying shapes into predefined archaeological types and analyzing the associated distinguishing characteristics. Recently, series of high-resolution digital representations of artifacts have become available. Such data sets enable the application of extremely sensitive and flexible methods of shape analysis. We explore this potential on a set of 3D models of ancient Greek and Roman sundials, with the aim of providing alternatives to the traditional archaeological method of “trend extraction by ordination” (typology). In the proposed approach, each 3D shape is represented as a point in a shape space—a high-dimensional, curved, non-Euclidean space. Proper consideration of its mathematical properties reduces bias in data analysis and thus improves analytical power. By performing regression in shape space, we find that for Roman sundials, the bend of the shadow-receiving surface of the sundials changes with the latitude of the location. This suggests that, apart from the inscribed hour lines, also a sundial’s shape was adjusted to the place of installation. As an example of more advanced inference, we use the identified trend to infer the latitude at which a sundial, whose location of installation is unknown, was placed. We also derive a novel method for differentiated morphological trend assertion, building upon and extending the theory of geometric statistics and shape analysis. Specifically, we present a regression-based method for statistical normalization of shapes that serves as a means of disentangling parameter-dependent effects (trends) and unexplained variability. In addition, we show that this approach is robust to noise in the digital reconstructions of the artifact shapes. Y1 - 2023 U6 - https://doi.org/10.1145/3606698 VL - 16 IS - 4 SP - 1 EP - 26 ER - TY - JOUR A1 - Boelts, Jan A1 - Harth, Philipp A1 - Gao, Richard A1 - Udvary, Daniel A1 - Yanez, Felipe A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Oberlaender, Marcel A1 - Macke, Jakob H. T1 - Simulation-based inference for efficient identification of generative models in computational connectomics JF - PLOS Computational Biology N2 - Recent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neuronal networks using a hypothesized wiring rule in a generative model and to compare the resulting synthetic data with empirical data. However, most wiring rules have at least some free parameters, and identifying parameters that reproduce empirical data can be challenging as it often requires manual parameter tuning. Here, we propose to use simulation-based Bayesian inference (SBI) to address this challenge. Rather than optimizing a fixed wiring rule to fit the empirical data, SBI considers many parametrizations of a rule and performs Bayesian inference to identify the parameters that are compatible with the data. It uses simulated data from multiple candidate wiring rule parameters and relies on machine learning methods to estimate a probability distribution (the 'posterior distribution over parameters conditioned on the data') that characterizes all data-compatible parameters. We demonstrate how to apply SBI in computational connectomics by inferring the parameters of wiring rules in an in silico model of the rat barrel cortex, given in vivo connectivity measurements. SBI identifies a wide range of wiring rule parameters that reproduce the measurements. We show how access to the posterior distribution over all data-compatible parameters allows us to analyze their relationship, revealing biologically plausible parameter interactions and enabling experimentally testable predictions. We further show how SBI can be applied to wiring rules at different spatial scales to quantitatively rule out invalid wiring hypotheses. Our approach is applicable to a wide range of generative models used in connectomics, providing a quantitative and efficient way to constrain model parameters with empirical connectivity data. Y1 - 2023 U6 - https://doi.org/10.1371/journal.pcbi.1011406 VL - 19 IS - 9 ER - TY - JOUR A1 - Boelts, Jan A1 - Harth, Philipp A1 - Gao, Richard A1 - Udvary, Daniel A1 - Yanez, Felipe A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Oberlaender, Marcel A1 - Macke, Jakob H T1 - Simulation-based inference for efficient identification of generative models in connectomics JF - bioRxiv N2 - Recent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neural networks using a hypothesized wiring rule in a generative model and to compare the resulting synthetic data with empirical data. However, most wiring rules have at least some free parameters and identifying parameters that reproduce empirical data can be challenging as it often requires manual parameter tuning. Here, we propose to use simulation-based Bayesian inference (SBI) to address this challenge. Rather than optimizing a single rule to fit the empirical data, SBI considers many parametrizations of a wiring rule and performs Bayesian inference to identify the parameters that are compatible with the data. It uses simulated data from multiple candidate wiring rules and relies on machine learning methods to estimate a probability distribution (the `posterior distribution over rule parameters conditioned on the data') that characterizes all data-compatible rules. We demonstrate how to apply SBI in connectomics by inferring the parameters of wiring rules in an in silico model of the rat barrel cortex, given in vivo connectivity measurements. SBI identifies a wide range of wiring rule parameters that reproduce the measurements. We show how access to the posterior distribution over all data-compatible parameters allows us to analyze their relationship, revealing biologically plausible parameter interactions and enabling experimentally testable predictions. We further show how SBI can be applied to wiring rules at different spatial scales to quantitatively rule out invalid wiring hypotheses. Our approach is applicable to a wide range of generative models used in connectomics, providing a quantitative and efficient way to constrain model parameters with empirical connectivity data. Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89890 ER - TY - CHAP A1 - Harth, Philipp A1 - Bast, Arco A1 - Troidl, Jakob A1 - Meulemeester, Bjorge A1 - Pfister, Hanspeter A1 - Beyer, Johanna A1 - Oberlaender, Marcel A1 - Hege, Hans-Christian A1 - Baum, Daniel T1 - Rapid Prototyping for Coordinated Views of Multi-scale Spatial and Abstract Data: A Grammar-based Approach T2 - Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM) N2 - Visualization grammars are gaining popularity as they allow visualization specialists and experienced users to quickly create static and interactive views. Existing grammars, however, mostly focus on abstract views, ignoring three-dimensional (3D) views, which are very important in fields such as natural sciences. We propose a generalized interaction grammar for the problem of coordinating heterogeneous view types, such as standard charts (e.g., based on Vega-Lite) and 3D anatomical views. An important aspect of our web-based framework is that user interactions with data items at various levels of detail can be systematically integrated and used to control the overall layout of the application workspace. With the help of a concise JSON-based specification of the intended workflow, we can handle complex interactive visual analysis scenarios. This enables rapid prototyping and iterative refinement of the visual analysis tool in collaboration with domain experts. We illustrate the usefulness of our framework in two real-world case studies from the field of neuroscience. Since the logic of the presented grammar-based approach for handling interactions between heterogeneous web-based views is free of any application specifics, it can also serve as a template for applications beyond biological research. Y1 - 2023 U6 - https://doi.org/10.2312/vcbm.20231218 ER - TY - JOUR A1 - Hanik, Martin A1 - Hege, Hans-Christian A1 - von Tycowicz, Christoph T1 - Bi-invariant Dissimilarity Measures for Sample Distributions in Lie Groups JF - SIAM Journal on Mathematics of Data Science N2 - Data sets sampled in Lie groups are widespread, and as with multivariate data, it is important for many applications to assess the differences between the sets in terms of their distributions. Indices for this task are usually derived by considering the Lie group as a Riemannian manifold. Then, however, compatibility with the group operation is guaranteed only if a bi-invariant metric exists, which is not the case for most non-compact and non-commutative groups. We show here that if one considers an affine connection structure instead, one obtains bi-invariant generalizations of well-known dissimilarity measures: a Hotelling $T^2$ statistic, Bhattacharyya distance and Hellinger distance. Each of the dissimilarity measures matches its multivariate counterpart for Euclidean data and is translation-invariant, so that biases, e.g., through an arbitrary choice of reference, are avoided. We further derive non-parametric two-sample tests that are bi-invariant and consistent. We demonstrate the potential of these dissimilarity measures by performing group tests on data of knee configurations and epidemiological shape data. Significant differences are revealed in both cases. Y1 - 2022 U6 - https://doi.org/10.1137/21M1410373 VL - 4 IS - 4 SP - 1223 EP - 1249 ER - TY - JOUR A1 - Vohra, Sumit Kumar A1 - Herrera, Kristian A1 - Tavhelidse-Suck, Tinatini A1 - Knoblich, Simon A1 - Seleit, Ali A1 - Boulanger-Weill, Jonathan A1 - Chambule, Sydney A1 - Aspiras, Ariel A1 - Santoriello, Cristina A1 - Randlett, Owen A1 - Wittbrodt, Joachim A1 - Aulehla, Alexander A1 - Lichtman, Jeff W. A1 - Fishman, Mark A1 - Hege, Hans-Christian A1 - Baum, Daniel A1 - Engert, Florian A1 - Isoe, Yasuko T1 - Multi-species community platform for comparative neuroscience in teleost fish N2 - Studying neural mechanisms in complementary model organisms from different ecological niches in the same animal class can leverage the comparative brain analysis at the cellular level. To advance such a direction, we developed a unified brain atlas platform and specialized tools that allowed us to quantitatively compare neural structures in two teleost larvae, medaka (Oryzias latipes) and zebrafish (Danio rerio). Leveraging this quantitative approach we found that most brain regions are similar but some subpopulations are unique in each species. Specifically, we confirmed the existence of a clear dorsal pallial region in the telencephalon in medaka lacking in zebrafish. Further, our approach allows for extraction of differentially expressed genes in both species, and for quantitative comparison of neural activity at cellular resolution. The web-based and interactive nature of this atlas platform will facilitate the teleost community’s research and its easy extensibility will encourage contributions to its continuous expansion. Y1 - 2024 U6 - https://doi.org/10.1101/2024.02.14.580400 ER -