TY - GEN A1 - Bojarovski, Stefan A1 - Hege, Hans-Christian A1 - Lie, Han Cheng A1 - Weber, Marcus T1 - Topological analysis and visualization of scalar functions characterizing conformational transitions of molecules on multiple time-scales T2 - Shape Up 2015 - Exercises in Materials Geometry and Topology, 14-18 Sept. 2015, Berlin, Germany N2 - Molecular processes such as protein folding or ligand-receptor-binding can be understood by analyzing the free energy landscape. Those processes are often metastable, i.e. the molecular systems remain in basins around local minima of the free energy landscape, and in rare cases undergo gauche transitions between metastable states by passing saddle-points of this landscape. By discretizing the configuration space, this can be modeled as a discrete Markov process. One way to compute the transition rates between conformations of a molecular system is by utilizing Transition Path Theory and the concept of committor functions. A fundamental problem from the computational point of view is that many time-scales are involved, ranging from 10^(-14) sec for the fastest motion to 10^(-6) sec or more for conformation changes that cause biological effects. The goal of our work is to provide a better understanding of such transitions in configuration space on various time-scales by analyzing characteristic scalar functions topologically and geometrically. We are developing suitable visualization and interaction techniques to support our analysis. For example, we are analyzing a transition rate indicator function by computing and visualizing its Reeb graph together with the sets of molecular states corresponding to maxima of the transition rate indicator function. A particular challenge is the high dimensionality of the domain which does not allow for a straightforward visualization of the function. The computational topology approach to the analysis of the transition rate indicator functions for a molecular system allows to explore different time scales of the system by utilizing coarser or finer topological partitioning of the function. A specific goal is the development of tools for analyzing the hierarchy of these partitionings. This approach tackles the analysis of a complex and sparse dataset from a different angle than the well-known spectral analysis of Markov State Models. Y1 - 2015 ER - TY - JOUR A1 - Cournia, Zoe A1 - Allen, Toby W. A1 - Andricioaei, Ioan A1 - Antonny, Bruno A1 - Baum, Daniel A1 - Brannigan, Grace A1 - Buchete, Nicolae-Viorel A1 - Deckman, Jason T. A1 - Delemotte, Lucie A1 - del Val, Coral A1 - Friedman, Ran A1 - Gkeka, Paraskevi A1 - Hege, Hans-Christian A1 - Hénin, Jérôme A1 - Kasimova, Marina A. A1 - Kolocouris, Antonios A1 - Klein, Michael L. A1 - Khalid, Syma A1 - Lemieux, Joanne A1 - Lindow, Norbert A1 - Roy, Mahua A1 - Selent, Jana A1 - Tarek, Mounir A1 - Tofoleanu, Florentina A1 - Vanni, Stefano A1 - Urban, Sinisa A1 - Wales, David J. A1 - Smith, Jeremy C. A1 - Bondar, Ana-Nicoleta T1 - Membrane Protein Structure, Function and Dynamics: A Perspective from Experiments and Theory JF - Journal of Membrane Biology Y1 - 2015 U6 - https://doi.org/10.1007/s00232-015-9802-0 VL - 248 IS - 4 SP - 611 EP - 640 ER - TY - GEN A1 - Deuflhard, Peter A1 - Hege, Hans-Christian ED - Lepper, Verena ED - Deuflhard, Peter ED - Markschies, Christoph T1 - Raumtiefe in Malerei und Computergrafik T2 - Räume - Bilder - Kulturen N2 - Einführung: Die Tiefenwirkung dreidimensionaler Räume in einem zweidimensionalen Bild einzufangen, ist ein Faszinosum nahezu aller Kulturen der Menschheitsgeschichte. Der vorliegende Aufsatz folgt den Spuren dieses Faszinosums, vergleichend in der Malerei und der mathematisierten Computergrafik. Die Entdeckung der Zentralperspektive in der italienischen Renaissance zeigt bereits den engen Zusammenhang von Malerei und Mathematik. Auf der Suche nach Maltechniken, mit denen Raumtiefe bildnerisch dargestellt werden kann, beginnen wir in Kap. 2 mit einem chronologischen Gang durch verschiedene Epochen der europäischen Malerei. Hieraus abgeleitete Prinzipien, soweit sie im Rechner realisierbar scheinen, stellen wir in Kap. 3 am Beispiel moderner Methoden der mathematischen Visualisierung vor. Y1 - 2015 SN - 978-3-11-035993-0 SP - 33 EP - 46 PB - Walter De Gruyter ER - TY - GEN A1 - Hoerth, Rebecca M. A1 - Baum, Daniel A1 - Knötel, David A1 - Prohaska, Steffen A1 - Willie, Bettina M. A1 - Duda, Georg A1 - Hege, Hans-Christian A1 - Fratzl, Peter A1 - Wagermaier, Wolfgang T1 - Registering 2D and 3D Imaging Data of Bone during Healing N2 - Purpose/Aims of the Study: Bone’s hierarchical structure can be visualized using a variety of methods. Many techniques, such as light and electron microscopy generate two-dimensional (2D) images, while micro computed tomography (μCT) allows a direct representation of the three-dimensional (3D) structure. In addition, different methods provide complementary structural information, such as the arrangement of organic or inorganic compounds. The overall aim of the present study is to answer bone research questions by linking information of different 2D and 3D imaging techniques. A great challenge in combining different methods arises from the fact that they usually reflect different characteristics of the real structure. Materials and Methods: We investigated bone during healing by means of μCT and a couple of 2D methods. Backscattered electron images were used to qualitatively evaluate the tissue’s calcium content and served as a position map for other experimental data. Nanoindentation and X-ray scattering experiments were performed to visualize mechanical and structural properties. Results: We present an approach for the registration of 2D data in a 3D μCT reference frame, where scanning electron microscopies serve as a methodic link. Backscattered electron images are perfectly suited for registration into μCT reference frames, since both show structures based on the same physical principles. We introduce specific registration tools that have been developed to perform the registration process in a semi-automatic way. Conclusions: By applying this routine, we were able to exactly locate structural information (e.g. mineral particle properties) in the 3D bone volume. In bone healing studies this will help to better understand basic formation, remodeling and mineralization processes. T3 - ZIB-Report - 15-01 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-53426 SN - 1438-0064 ER - TY - JOUR A1 - Hoerth, Rebecca M. A1 - Baum, Daniel A1 - Knötel, David A1 - Prohaska, Steffen A1 - Willie, Bettina M. A1 - Duda, Georg A1 - Hege, Hans-Christian A1 - Fratzl, Peter A1 - Wagermaier, Wolfgang T1 - Registering 2D and 3D Imaging Data of Bone during Healing JF - Connective Tissue Research Y1 - 2015 U6 - https://doi.org/10.3109/03008207.2015.1005210 VL - 56 IS - 2 SP - 133 EP - 143 PB - Taylor & Francis ER - TY - CHAP A1 - Jácome, Leonardo Agudo A1 - Eggeler, Gunter A1 - Pöthkow, Kai A1 - Paetsch, Olaf A1 - Hege, Hans-Christian T1 - Three-Dimensional Characterization of Superdislocation Interactions in the High Temperature and Low Stress Creep Regime of Ni-Base Superalloy Single Crystals T2 - Proceedings of CREEP 2015 – 13th International Conference on Creep and Fracture of Engineering Materials and Structures, May 31 – June 4, 2015, Toulouse, France N2 - Monocrystaline Ni-base superalloys are the material of choice for first row blades in jet engine gas turbines. Using a novel visualization tool for 3D reconstruction and visualization of dislocation line segments from stereo-pairs of scanning transmission electron microscopies, the superdislocation substructures in Ni-base superalloy LEK 94 (crept to ε = 26%) are characterized. Probable scenarios are discussed, how these dislocation substructures form. Y1 - 2015 SP - 16 EP - 17 ER - TY - GEN A1 - Kasten, Jens A1 - Reininghaus, Jan A1 - Hotz, Ingrid A1 - Hege, Hans-Christian A1 - Noack, Bernd A1 - Daviller, Guillaume A1 - Morzyński, Marek T1 - Acceleration feature points of unsteady shear flows N2 - A framework is proposed for extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance. The minima of the acceleration magnitude, i.e. a superset of the acceleration zeros, are extracted and discriminated into vortices and saddle points --- based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These features are tracked in time with a robust algorithm for tracking features. Thus a space-time hierarchy of the minima is built and vortex merging events are detected. The acceleration feature extraction strategy is applied to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of pressure field and minima of λ2. T3 - ZIB-Report - 15-65 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-58397 SN - 1438-0064 ER - TY - GEN A1 - Kozlikova, Barbora A1 - Krone, Michael A1 - Falk, Martin A1 - Lindow, Norbert A1 - Baaden, Marc A1 - Baum, Daniel A1 - Viola, Ivan A1 - Parulek, Julius A1 - Hege, Hans-Christian T1 - Visualization of Biomolecular Structures: State of the Art N2 - Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets. T3 - ZIB-Report - 15-63 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57217 SN - 1438-0064 ER - TY - CHAP A1 - Kozlikova, Barbora A1 - Krone, Michael A1 - Lindow, Norbert A1 - Falk, Martin A1 - Baaden, Marc A1 - Baum, Daniel A1 - Viola, Ivan A1 - Parulek, Julius A1 - Hege, Hans-Christian T1 - Visualization of Biomolecular Structures: State of the Art T2 - EuroVis 2015 STARS Proceedings N2 - Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The report concludes with an outlook on promising and important research topics to enable further success in advancing the knowledge about interaction of molecular structures. Y1 - 2015 U6 - https://doi.org/10.2312/eurovisstar.20151112 SP - 61 EP - 81 ER - TY - JOUR A1 - Kramer, Tobias A1 - Noack, Matthias A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Heller, Eric J. T1 - Homogeneous dust emission and jet structure near active cometary nuclei: the case of 67P/Churyumov-Gerasimenko N2 - We compute trajectories of dust grains starting from a homogeneous surface activity-profile on a irregularly shaped cometary nucleus. Despite the initially homogeneous dust distribution a collimation in jet-like structures becomes visible. The fine structure is caused by concave topographical features with similar bundles of normal vectors. The model incorporates accurately determined gravitational forces, rotation of the nucleus, and gas-dust interaction. Jet-like dust structures are obtained for a wide range of gas-dust interactions. For the comet 67P/Churyumov-Gerasimenko, we derive the global dust distribution around the nucleus and find several areas of agreement between the homogeneous dust emission model and the Rosetta observation of dust jets, including velocity-dependent bending of trajectories. Y1 - 2015 ER -