TY - GEN A1 - Lindow, Norbert A1 - Redemann, Stefanie A1 - Fabig, Gunar A1 - Müller-Reichert, Thomas A1 - Prohaska, Steffen T1 - Quantification of Three-Dimensional Spindle Architecture N2 - Mitotic and meiotic spindles are microtubule-based structures to faithfully segregate chromosomes. Electron tomography is currently the method of choice to analyze the three-dimensional architecture of both types of spindles. Over the years, we have developed methods and software for automatic segmentation and stitching of microtubules in serial sections for large-scale reconstructions. Three-dimensional reconstruction of microtubules, however, is only the first step towards biological insight. The second step is the analysis of the structural data to derive measurable spindle properties. Here, we present a comprehensive set of techniques to quantify spindle parameters. These techniques provide quantitative analyses of specific microtubule classes and are applicable to a variety of tomographic reconstructions of spindles from different organisms. T3 - ZIB-Report - 18-07 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66562 SN - 1438-0064 ER - TY - CHAP A1 - Lindow, Norbert A1 - Redemann, Stefanie A1 - Brünig, Florian A1 - Fabig, Gunar A1 - Müller-Reichert, Thomas A1 - Prohaska, Steffen T1 - Quantification of three-dimensional spindle architecture T2 - Methods in Cell Biology Part B N2 - Mitotic and meiotic spindles are microtubule-based structures to faithfully segregate chromosomes. Electron tomography is currently the method of choice to analyze the three-dimensional (3D) architecture of both types of spindles. Over the years, we have developed methods and software for automatic segmentation and stitching of microtubules in serial sections for large-scale reconstructions. 3D reconstruction of microtubules, however, is only the first step toward biological insight. The second step is the analysis of the structural data to derive measurable spindle properties. Here, we present a comprehensive set of techniques to quantify spindle parameters. These techniques provide quantitative analyses of specific microtubule classes and are applicable to a variety of tomographic reconstructions of spindles from different organisms. Y1 - 2018 U6 - https://doi.org/10.1016/bs.mcb.2018.03.012 SN - 0091-679X VL - 145 SP - 45 EP - 64 PB - Academic Press ER -