TY - JOUR A1 - Koltai, Peter A1 - Wu, Hao A1 - Noé, Frank A1 - Schütte, Christof T1 - Optimal data-driven estimation of generalized Markov state models for non-equilibrium dynamics JF - Computation Y1 - 2018 U6 - https://doi.org/10.3390/computation6010022 VL - 6 IS - 1 PB - MDPI CY - Basel, Switzerland ER - TY - JOUR A1 - Dibak, Manuel A1 - del Razo, Mauricio J. A1 - de Sancho, David A1 - Schütte, Christof A1 - Noé, Frank T1 - MSM/RD: Coupling Markov state models of molecular kinetics with reaction-diffusion simulations JF - Journal of Chemical Physics N2 - Molecular dynamics (MD) simulations can model the interactions between macromolecules with high spatiotemporal resolution but at a high computational cost. By combining high-throughput MD with Markov state models (MSMs), it is now possible to obtain long time-scale behavior of small to intermediate biomolecules and complexes. To model the interactions of many molecules at large length scales, particle-based reaction-diffusion (RD) simulations are more suitable but lack molecular detail. Thus, coupling MSMs and RD simulations (MSM/RD) would be highly desirable, as they could efficiently produce simulations at large time and length scales, while still conserving the characteristic features of the interactions observed at atomic detail. While such a coupling seems straightforward, fundamental questions are still open: Which definition of MSM states is suitable? Which protocol to merge and split RD particles in an association/dissociation reaction will conserve the correct bimolecular kinetics and thermodynamics? In this paper, we make the first step toward MSM/RD by laying out a general theory of coupling and proposing a first implementation for association/dissociation of a protein with a small ligand (A + B ⇌ C). Applications on a toy model and CO diffusion into the heme cavity of myoglobin are reported. Y1 - 2018 U6 - https://doi.org/10.1063/1.5020294 VL - 148 IS - 21 ER - TY - JOUR A1 - Klus, Stefan A1 - Nüske, Feliks A1 - Koltai, Peter A1 - Wu, Hao A1 - Kevrekidis, Ioannis A1 - Schütte, Christof A1 - Noé, Frank T1 - Data-driven model reduction and transfer operator approximation JF - Journal of Nonlinear Science Y1 - 2018 UR - https://link.springer.com/article/10.1007/s00332-017-9437-7 U6 - https://doi.org/10.1007/s00332-017-9437-7 VL - 28 IS - 3 SP - 985 EP - 1010 ER - TY - JOUR A1 - Dibak, Manuel A1 - J. del Razo, Mauricio A1 - De Sancho, David A1 - Schütte, Christof A1 - Noé, Frank T1 - MSM/RD: Coupling Markov state models of molecular kinetics with reaction-diffusion simulations JF - Journal of Chemical Physics N2 - Molecular dynamics (MD) simulations can model the interactions between macromolecules with high spatiotemporal resolution but at a high computational cost. By combining high-throughput MD with Markov state models (MSMs), it is now possible to obtain long-timescale behavior of small to intermediate biomolecules and complexes. To model the interactions of many molecules at large lengthscales, particle-based reaction-diffusion (RD) simulations are more suitable but lack molecular detail. Thus, coupling MSMs and RD simulations (MSM/RD) would be highly desirable, as they could efficiently produce simulations at large time- and lengthscales, while still conserving the characteristic features of the interactions observed at atomic detail. While such a coupling seems straightforward, fundamental questions are still open: Which definition of MSM states is suitable? Which protocol to merge and split RD particles in an association/dissociation reaction will conserve the correct bimolecular kinetics and thermodynamics? In this paper, we make the first step towards MSM/RD by laying out a general theory of coupling and proposing a first implementation for association/dissociation of a protein with a small ligand (A + B <--> C). Applications on a toy model and CO diffusion into the heme cavity of myoglobin are reported. Y1 - 2018 U6 - https://doi.org/10.1063/1.5020294 VL - 148 IS - 214107 ER -