TY - GEN A1 - Hennings, Felix A1 - Hoppmann-Baum, Kai A1 - Zittel, Janina T1 - Optimizing transient gas network control for challenging real-world instances using MIP-based heuristics N2 - Optimizing the transient control of gas networks is a highly challenging task. The corresponding model incorporates the combinatorial complexity of determining the settings for the many active elements as well as the non-linear and non-convex nature of the physical and technical principles of gas transport. In this paper, we present the latest improvements of our ongoing work to solve this problem for real-world, large-scale problem instances: By adjusting our mixed-integer non-linear programming model regarding the gas compression capabilities in the network, we reflect the technical limits of the underlying units more accurately while maintaining a similar overall model size. In addition, we introduce a new algorithmic approach that is based on splitting the complexity of the problem by first finding assignments for discrete variables and then determining the continuous variables as locally optimal solution of the corresponding non-linear program. For the first task, we design multiple different heuristics based on concepts for general time-expanded optimization problems that find solutions by solving a sequence of sub-problems defined on reduced time horizons. To demonstrate the competitiveness of our approach, we test our algorithm on particularly challenging historic demand scenarios. The results show that high-quality solutions are obtained reliably within short solving times, making the algorithm well-suited to be applied at the core of time-critical industrial applications. T3 - ZIB-Report - 22-08 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-86842 SN - 1438-0064 ER - TY - GEN A1 - Hoppmann, Kai A1 - Hennings, Felix A1 - Lenz, Ralf A1 - Gotzes, Uwe A1 - Heinecke, Nina A1 - Spreckelsen, Klaus A1 - Koch, Thorsten T1 - Optimal Operation of Transient Gas Transport Networks T3 - ZIB-Report - 19-23 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73639 SN - 1438-0064 ER - TY - GEN A1 - Hennings, Felix A1 - Petkovic, Milena A1 - Streubel, Tom T1 - On the Numerical Treatment of Interlaced Target Values - Modeling, Optimization and Simulation of Regulating Valves in Gas Networks N2 - Due to the current and foreseeable shifts in energy production, the trading and transport operations of gas will become more dynamic, volatile, and hence also less predictable. Therefore, computer-aided support in terms of rapid simulation and control optimization will further broaden its importance for gas network dispatching. In this paper, we aim to contribute and openly publish two new mathematical models for regulators, also referred to as control valves, which together with compressors make up the most complex and involved types of active elements in gas network infrastructures. They provide full direct control over gas networks but are in turn controlled via target values, also known as set-point values, themselves. Our models incorporate up to six dynamical target values to define desired transient states for the elements' local vicinity within the network. That is, each pair of every two target values defines a bounding box for the inlet pressure, outlet pressure as well as the passing mass flow of gas. In the proposed models, those target values are prioritized differently and are constantly in competition with each other, which can only be resolved dynamically at run-time of either a simulation or optimization process. Besides careful derivation, we compare simulation and optimization results with predictions of the commercial simulation tool SIMONE. T3 - ZIB-Report - 21-32 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85359 SN - 1438-0064 ER - TY - GEN A1 - Yueksel-Erguen, Inci A1 - Zittel, Janina A1 - Wang, Ying A1 - Hennings, Felix A1 - Koch, Thorsten T1 - Lessons learned from gas network data preprocessing N2 - The German high-pressure natural gas transport network consists of thousands of interconnected elements spread over more than 120,000 km of pipelines built during the last 100 years. During the last decade, we have spent many person-years to extract consistent data out of the available sources, both public and private. Based on two case studies, we present some of the challenges we encountered. Preparing consistent, high-quality data is surprisingly hard, and the effort necessary can hardly be overestimated. Thus, it is particularly important to decide which strategy regarding data curation to adopt. Which precision of the data is necessary? When is it more efficient to work with data that is just sufficiently correct on average? In the case studies we describe our experiences and the strategies we adopted to deal with the obstacles and to minimize future effort. Finally, we would like to emphasize that well-compiled data sets, publicly available for research purposes, provide the grounds for building innovative algorithmic solutions to the challenges of the future. T3 - ZIB-Report - 20-13 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78262 SN - 1438-0064 ER - TY - GEN A1 - Hennings, Felix T1 - Large-scale empirical study on the momentum equation's inertia term N2 - A common approach to reduce the Euler equations' complexity for the simulation and optimization of gas networks is to neglect small terms that contribute little to the overall equations. An example is the inertia term of the momentum equation since it is said to be of negligible size under real-world operating conditions. However, this justification has always only been based on experience or single sets of artificial data points. This study closes this gap by presenting a large-scale empirical evaluation of the absolute and relative size of the inertia term when operating a real-world gas network. Our data consists of three years of fine-granular state data of one of the largest gas networks in Europe, featuring over 6,000 pipes with a total length of over 10,000 km. We found that there are only 120 events in which a subnetwork consisting of multiple pipes has an inertia term of high significance for more than three minutes. On average, such an event occurs less often than once every ten days. Therefore, we conclude that the inertia term is indeed negligible for real-world transient gas network control problems. T3 - ZIB-Report - 21-08 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81881 SN - 1438-0064 ER - TY - GEN A1 - Hoppmann-Baum, Kai A1 - Hennings, Felix A1 - Zittel, Janina A1 - Gotzes, Uwe A1 - Spreckelsen, Eva-Maria A1 - Spreckelsen, Klaus A1 - Koch, Thorsten T1 - From Natural Gas towards Hydrogen - A Feasibility Study on Current Transport Network Infrastructure and its Technical Control N2 - This study examines the usability of a real-world, large-scale natural gas transport infrastructure for hydrogen transport. We investigate whether a converted network can transport the amounts of hydrogen necessary to satisfy current energy demands. After introducing an optimization model for the robust transient control of hydrogen networks, we conduct computational experiments based on real-world demand scenarios. Using a representative network, we demonstrate that replacing each turbo compressor unit by four parallel hydrogen compressors, each of them comprising multiple serial compression stages, and imposing stricter rules regarding the balancing of in- and outflow suffices to realize transport in a majority of scenarios. However, due to the reduced linepack there is an increased need for technical and non-technical measures leading to a more dynamic network control. Furthermore, the amount of energy needed for compression increases by 364% on average. T3 - ZIB-Report - 20-27 KW - Hydrogen Transport KW - Hydrogen Infrastructure KW - Network Flows KW - Mixed Integer Programming KW - Energiewende Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-79901 SN - 1438-0064 ER - TY - GEN A1 - Hennings, Felix A1 - Anderson, Lovis A1 - Hoppmann, Kai A1 - Turner, Mark A1 - Koch, Thorsten T1 - Controlling transient gas flow in real-world pipeline intersection areas N2 - Compressor stations are the heart of every high-pressure gas transport network. Located at intersection areas of the network they are contained in huge complex plants, where they are in combination with valves and regulators responsible for routing and pushing the gas through the network. Due to their complexity and lack of data compressor stations are usually dealt with in the scientific literature in a highly simplified and idealized manner. As part of an ongoing project with one of Germany's largest Transmission System Operators to develop a decision support system for their dispatching center, we investigated how to automatize control of compressor stations. Each station has to be in a particular configuration, leading in combination with the other nearby elements to a discrete set of up to 2000 possible feasible operation modes in the intersection area. Since the desired performance of the station changes over time, the configuration of the station has to adapt. Our goal is to minimize the necessary changes in the overall operation modes and related elements over time, while fulfilling a preset performance envelope or demand scenario. This article describes the chosen model and the implemented mixed integer programming based algorithms to tackle this challenge. By presenting extensive computational results on real world data we demonstrate the performance of our approach. T3 - ZIB-Report - 19-24 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73645 SN - 1438-0064 ER - TY - GEN A1 - Hennings, Felix T1 - Benefits and Limitations of Simplified Transient Gas Flow Formulations N2 - Although intensively studied in recent years, the optimization of the transient (time-dependent) control of large real-world gas networks is still out of reach for current state-of-the-art approaches. For this reason, we present further simplifications of the commonly used model, which lead to a linear description of the gas flow on pipelines. In an empirical analysis of real-world data, we investigate the properties of the involved quantities and evaluate the errors made by our simplification. T3 - ZIB-Report - 17-39 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64570 SN - 1438-0064 ER -