TY - CHAP A1 - Borndörfer, Ralf A1 - Löbel, Andreas A1 - Löbel, Fabian A1 - Weider, Steffen T1 - Solving the Electric Bus Scheduling Problem by an Integrated Flow and Set Partitioning Approach T2 - 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024) N2 - Attractive and cost-efficient public transport requires solving computationally difficult optimization problems from network design to crew rostering. While great progress has been made in many areas, new requirements to handle increasingly complex constraints are constantly coming up. One such challenge is a new type of resource constraints that are used to deal with the state-of-charge of battery-electric vehicles, which have limited driving ranges and need to be recharged in-service. Resource constrained vehicle scheduling problems can classically be modelled in terms of either a resource constrained (multi-commodity) flow problem or in terms of a path-based set partition problem. We demonstrate how a novel integrated version of both formulations can be leveraged to solve resource constrained vehicle scheduling with replenishment in general and the electric bus scheduling problem in particular by Lagrangian relaxation and the proximal bundle method. Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0030-drops-211992 VL - 123 SP - 11:1 EP - 11:16 PB - Schloss Dagstuhl -- Leibniz-Zentrum für Informatik CY - Dagstuhl, Germany ER - TY - GEN A1 - Löbel, Fabian A1 - Lindner, Niels A1 - Borndörfer, Ralf T1 - The Restricted Modulo Network Simplex Method for Integrated Periodic Timetabling and Passenger Routing N2 - The Periodic Event Scheduling Problem is a well-studied NP-hard problem with applications in public transportation to find good periodic timetables. Among the most powerful heuristics to solve the periodic timetabling problem is the modulo network simplex method. In this paper, we consider the more difficult version with integrated passenger routing and propose a refined integrated variant to solve this problem on real-world-based instances. T3 - ZIB-Report - 19-36 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Integrated Passenger Routing KW - Shortest Routes in Public Transport Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73868 SN - 1438-0064 ER - TY - THES A1 - Löbel, Fabian T1 - Solving Integrated Timetabling and Passenger Routing Problems Using the Modulo Network Simplex Algorithm N2 - Common models and solving approaches for the problem of periodic timetabling, that is, determining periodic arrival and departure times of a given public transportation network’s lines so that the total weighted travel time of all passengers is minimized, fail to take passenger behavior into account. Current research is attempting to resolve this issue and first results show a positive impact on solution quality. This thesis aims to give a brief overview of literature on the topic of timetabling and to then state a heuristic approach to Integrated Timetabling by blending passenger behavior into the Modulo Network Simplex algorithm, which is part of the research carried out by the author’s study group at the Zuse Institut Berlin in the framework of MATHEON’s research project MI-3 supported by the Einstein Foundation Berlin. Y1 - 2017 ER - TY - CHAP A1 - Löbel, Fabian A1 - Lindner, Niels ED - Sauer, Jonas ED - Schmidt, Marie T1 - A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing T2 - 25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2025) N2 - We offer a geometric perspective on the problem of integrated periodic timetabling and passenger routing in public transport. Inside the space of periodic tensions, we single out those regions, where the same set of paths provides shortest passenger routes. This results in a polyhedral subdivision, which we combine with the known decomposition by polytropes. On each maximal region of the common refinement, the integrated problem is solvable in polynomial time. We transform these insights into a new geometry-driven primal heuristic, integrated tropical neighborhood search (ITNS). Computationally, we compare implementations of ITNS and the integrated (restricted) modulo network simplex algorithm on the TimPassLib benchmark set, and contribute better solutions in terms of total travel time for all but one of the twenty-five instances for which a proven optimal solution is not yet known. KW - Periodic Timetabling KW - Passenger Routing KW - Polyhedral Complexes Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0030-drops-247580 SN - 978-3-95977-404-8 SN - 2190-6807 VL - 137 SP - 2:1 EP - 2:19 PB - Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik CY - Dagstuhl, Germany ER - TY - CHAP A1 - Löbel, Fabian A1 - Borndörfer, Ralf A1 - Weider, Steffen ED - Voigt, Guido ED - Fliedner, Malte ED - Haase, Knut ED - Brüggermann, Wolfgang ED - Hoberg, Kai ED - Meissner, Joern T1 - Non-linear Battery Behavior in Electric Vehicle Scheduling Problems T2 - Operations Research Proceedings 2023. OR 2023. N2 - The currently most popular approach to handle non-linear battery behavior for electric vehicle scheduling is to use a linear spline interpolation of the charge curve. We show that this can lead to approximate models that underestimate the charge duration and overestimate the state of charge, which is not desirable. While the error is of second order with respect to the interpolation step size, the associated mixed-integer linear programs do not scale well with the number of spline segments. It is therefore recommendable to use coarse interpolation grids adapted to the curvature of the charge curve, and to include sufficient safety margins to ensure solutions of approximate models remain feasible subjected to the exact charge curve. KW - Electric Vehicle Scheduling KW - Non-Linear Charging Y1 - 2025 SN - 9783031584046 U6 - https://doi.org/10.1007/978-3-031-58405-3_53 SN - 2731-040X SP - 415 EP - 421 PB - Springer Nature Switzerland CY - Cham ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Hoppmann, Heide A1 - Karbstein, Marika A1 - Löbel, Fabian T1 - The Modulo Network Simplex with Integrated Passenger Routing T2 - Operations Research Proceedings 2016 N2 - Periodic timetabling is an important strategic planning problem in public transport. The task is to determine periodic arrival and departure times of the lines in a given network, minimizing the travel time of the passengers. We extend the modulo network simplex method, a well-established heuristic for the periodic timetabling problem, by integrating a passenger (re)routing step into the pivot operations. Computations on real-world networks show that we can indeed find timetables with much shorter total travel time, when we take the passengers' travel paths into consideration. Y1 - 2016 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Hoppmann, Heide A1 - Karbstein, Marika A1 - Löbel, Fabian T1 - The Modulo Network Simplex with Integrated Passenger Routing N2 - Periodic timetabling is an important strategic planning problem in public transport. The task is to determine periodic arrival and departure times of the lines in a given network, minimizing the travel time of the passengers. We extend the modulo network simplex method, a well-established heuristic for the periodic timetabling problem, by integrating a passenger (re)routing step into the pivot operations. Computations on real-world networks show that we can indeed find timetables with much shorter total travel time, when we take the passengers' travel paths into consideration. T3 - ZIB-Report - 16-43 KW - periodic timetabling, modulo network simplex, passenger routing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60319 SN - 1438-0064 ER - TY - GEN A1 - Löbel, Fabian A1 - Borndörfer, Ralf A1 - Weider, Steffen T1 - Electric Bus Scheduling with Non-Linear Charging, Power Grid Bottlenecks, and Dynamic Recharge Rates N2 - Public transport operators are gradually electrifying their bus fleets, predominantly with battery-powered drive trains. These buses commonly have to be scheduled to recharge in-service, which gives rise to a number of challenges. A major problem is that the relationship between charging time and replenished driving range is non-linear, which is often approximately modeled. We examine the associated approximation error and show how it can result in a gross over- or underestimation of the fleet size. Moreover, we demonstrate that commonly used piecewise linear underestimations of the charge curve do not result in an underestimation of the predicted charge states in electric vehicle scheduling and routing models. Furthermore, since power grid upgrades are currently not keeping up with an ever growing electricity demand, operators are introducing active charge management tools to dynamically adjust the charging speed depending on the amount of available energy. It is therefore imperative to extend electric bus scheduling models to account for these developments. We propose a novel mixed-integer programming formulation for the electric bus scheduling problem featuring an improved approximation of the non-linear battery charging behavior as well as dynamic recharge speeds to accommodate grid load limits. The idea is to linearly interpolate what we call the charge increment function, which is closely related to the derivative of the commonly used charge curve. This provides very good error control and integrates easily into integer programming models. We demonstrate the practical usefulness of our model on a diverse library of real-life instances. Y1 - 2024 ER - TY - GEN A1 - Löbel, Fabian A1 - Borndörfer, Ralf A1 - Weider, Steffen T1 - Non-Linear Battery Behavior in Electric Vehicle Scheduling Problems N2 - The currently most popular approach to handle non-linear battery behavior for electric vehicle scheduling is to use a linear spline interpolation of the charge curve. We show that this can lead to approximate models that underestimate the charge duration and overestimate the state of charge, which is not desirable. While the error is of second order with respect to the interpolation step size, the associated mixed-integer linear programs do not scale well with the number of spline segments. It is therefore recommendable to use coarse interpolation grids adapted to the curvature of the charge curve, and to include sufficient safety margins to ensure solutions of approximate models remain feasible subjected to the exact charge curve. T3 - ZIB-Report - 23-24 KW - Electric Vehicle Scheduling KW - Non-Linear Charging Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-92441 SN - 1438-0064 ER - TY - CHAP A1 - Löbel, Fabian A1 - Borndörfer, Ralf A1 - Weider, Steffen T1 - Non-Linear Charge Functions for Electric Vehicle Scheduling with Dynamic Recharge Rates T2 - 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023) N2 - The ongoing electrification of logistics systems and vehicle fleets increases the complexity of associated vehicle routing or scheduling problems. Battery-powered vehicles have to be scheduled to recharge in-service, and the relationship between charging time and replenished driving range is non-linear. In order to access the powerful toolkit offered by mixed-integer and linear programming techniques, this battery behavior has to be linearized. Moreover, as electric fleets grow, power draw peaks have to be avoided to save on electricity costs or to adhere to hard grid capacity limits, such that it becomes desirable to keep recharge rates dynamic. We suggest a novel linearization approach of battery charging behavior for vehicle scheduling problems, in which the recharge rates are optimization variables and not model parameters. Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0030-drops-187765 VL - 115 SP - 15:1 EP - 15:6 ER - TY - THES A1 - Löbel, Fabian T1 - Implementing the Network Simplex for Hypergraphs N2 - The well-known network simplex algorithm is a powerful tool to solve flow problems on graphs. Based on a recent dissertation by Isabel Beckenbach, we develop the necessary theory to extend the network simplex to capacitated flow problems on hypergraphs and implement this new variant. We then attempt to solve instances arising from real-life vehicle rotation planning problems. Y1 - 2020 ER - TY - CHAP A1 - Löbel, Fabian A1 - Lindner, Niels A1 - Borndörfer, Ralf ED - Neufeld, Janis S. ED - Buscher, Udo ED - Lasch, Rainer ED - Möst, Dominik ED - Schönberger, Jörn T1 - The Restricted Modulo Network Simplex Method for Integrated Periodic Timetabling and Passenger Routing T2 - Operations Research Proceedings 2019 N2 - The Periodic Event Scheduling Problem is a well-studied NP-hard problem with applications in public transportation to find good periodic timetables. Among the most powerful heuristics to solve the periodic timetabling problem is the modulo network simplex method. In this paper, we consider the more difficult version with integrated passenger routing and propose a refined integrated variant to solve this problem on real-world-based instances. Y1 - 2020 SN - 978-3-030-48438-5 U6 - https://doi.org/https://doi.org/10.1007/978-3-030-48439-2_92 SP - 757 EP - 763 PB - Springer International Publishing CY - Cham ER -