TY - JOUR A1 - Redemann, Stefanie A1 - Baumgart, Johannes A1 - Lindow, Norbert A1 - Shelley, Michael A1 - Nazockdast, Ehssan A1 - Kratz, Andrea A1 - Prohaska, Steffen A1 - Brugués, Jan A1 - Fürthauer, Sebastian A1 - Müller-Reichert, Thomas T1 - C. elegans chromosomes connect to centrosomes by anchoring into the spindle network JF - Nature Communications N2 - The mitotic spindle ensures the faithful segregation of chromosomes. Here we combine the first large-scale serial electron tomography of whole mitotic spindles in early C. elegans embryos with live-cell imaging to reconstruct all microtubules in 3D and identify their plus- and minus-ends. We classify them as kinetochore (KMTs), spindle (SMTs) or astral microtubules (AMTs) according to their positions, and quantify distinct properties of each class. While our light microscopy and mutant studies show that microtubules are nucleated from the centrosomes, we find only a few KMTs directly connected to the centrosomes. Indeed, by quantitatively analysing several models of microtubule growth, we conclude that minus-ends of KMTs have selectively detached and depolymerized from the centrosome. In toto, our results show that the connection between centrosomes and chromosomes is mediated by an anchoring into the entire spindle network and that any direct connections through KMTs are few and likely very transient. Y1 - 2017 U6 - https://doi.org/10.1038/ncomms15288 VL - 8 IS - 15288 ER - TY - JOUR A1 - Lantzsch, Ina A1 - Yu, Che-Hang A1 - Chen, Yu-Zen A1 - Zimyanin, Vitaly A1 - Yazdkhasti, Hossein A1 - Lindow, Norbert A1 - Szentgyoergyi, Erik A1 - Pani, Ariel M A1 - Prohaska, Steffen A1 - Srayko, Martin A1 - Fürthauer, Sebastian A1 - Redemann, Stefanie T1 - Microtubule reorganization during female meiosis in C. elegans JF - eLife N2 - Most female meiotic spindles undergo striking morphological changes while transitioning from metaphase to anaphase. The ultra-structure of meiotic spindles, and how changes to this structure correlate with such dramatic spindle rearrangements remains largely unknown. To address this, we applied light microscopy, large-scale electron tomography and mathematical modeling of female meiotic \textit{Caenorhabditis elegans} spindles. Combining these approaches, we find that meiotic spindles are dynamic arrays of short microtubules that turn over within seconds. The results show that the metaphase to anaphase transition correlates with an increase in microtubule numbers and a decrease in their average length. Detailed analysis of the tomographic data revealed that the microtubule length changes significantly during the metaphase-to-anaphase transition. This effect is most pronounced for microtubules located within 150 nm of the chromosome surface. To understand the mechanisms that drive this transition, we developed a mathematical model for the microtubule length distribution that considers microtubule growth, catastrophe, and severing. Using Bayesian inference to compare model predictions and data, we find that microtubule turn-over is the major driver of the spindle reorganizations. Our data suggest that in metaphase only a minor fraction of microtubules, those closest to the chromosomes, are severed. The large majority of microtubules, which are not in close contact with chromosomes, do not undergo severing. Instead, their length distribution is fully explained by growth and catastrophe. This suggests that the most prominent drivers of spindle rearrangements are changes in nucleation and catastrophe rate. In addition, we provide evidence that microtubule severing is dependent on katanin. Y1 - 2021 U6 - https://doi.org/10.7554/eLife.58903 VL - 10 SP - e58903 ER -