TY - GEN A1 - Knötel, David A1 - Seidel, Ronald A1 - Weaver, James C. A1 - Baum, Daniel A1 - Dean, Mason N. T1 - Segmentation of the Tessellated Mineralized Endoskeleton of Sharks and Rays T2 - Poster, Tomography for Scientific Advancement symposium (ToScA), Manchester, UK, September 3 - 4, 2015 N2 - The cartilaginous endoskeletons of sharks and rays are covered by tiles of mineralized cartilage called tesserae that enclose areas of unmineralized cartilage. These tesselated layers are vital to the growth as well as the material properties of the skeleton, providing both flexibility and strength. An understanding of the principles behind the tiling of the mineralized layer requires a quantitative analysis of shark and ray skeletal tessellation. However, since a single skeletal element comprises several thousand tesserae, manual segmentation is infeasible. We developed an automated segmentation pipeline that, working from micro-CT data, allows quantification of all tesserae in a skeletal element in less than an hour. Our segmentation algorithm relies on aspects we have learned of general tesseral morphology. In micro-CT scans, tesserae usually appear as round or star-shaped plate-like tiles, wider than deep and connected by mineralized intertesseral joints. Based on these observations, we exploit the distance map of the mineralized layer to separate individual tiles using a hierarchical watershed algorithm. Utilizing a two-dimensional distance map that measures the distance in the plane of the mineralized layer only greatly improves the segmentation. We developed post-processing techniques to quickly correct segmentation errors in regions where tesseral shape differs from the assumed shape. Evaluation of our results is done qualitatively by visual comparison with raw datasets, and quantitatively by comparison to manual segmentations. Furthermore, we generate two-dimensional abstractions of the tiling network based on the neighborhood, allowing representation of complex, biological forms as simpler geometries. We apply our newly developed techniques to the analysis of the left and right hyomandibulae of four ages of stingray enabling the first quantitative analyses of the tesseral tiling structure, while clarifying how these patterns develop across ontogeny. Y1 - 2015 ER - TY - GEN A1 - Hoerth, Rebecca M. A1 - Baum, Daniel A1 - Knötel, David A1 - Prohaska, Steffen A1 - Willie, Bettina M. A1 - Duda, Georg A1 - Hege, Hans-Christian A1 - Fratzl, Peter A1 - Wagermaier, Wolfgang T1 - Registering 2D and 3D Imaging Data of Bone during Healing N2 - Purpose/Aims of the Study: Bone’s hierarchical structure can be visualized using a variety of methods. Many techniques, such as light and electron microscopy generate two-dimensional (2D) images, while micro computed tomography (μCT) allows a direct representation of the three-dimensional (3D) structure. In addition, different methods provide complementary structural information, such as the arrangement of organic or inorganic compounds. The overall aim of the present study is to answer bone research questions by linking information of different 2D and 3D imaging techniques. A great challenge in combining different methods arises from the fact that they usually reflect different characteristics of the real structure. Materials and Methods: We investigated bone during healing by means of μCT and a couple of 2D methods. Backscattered electron images were used to qualitatively evaluate the tissue’s calcium content and served as a position map for other experimental data. Nanoindentation and X-ray scattering experiments were performed to visualize mechanical and structural properties. Results: We present an approach for the registration of 2D data in a 3D μCT reference frame, where scanning electron microscopies serve as a methodic link. Backscattered electron images are perfectly suited for registration into μCT reference frames, since both show structures based on the same physical principles. We introduce specific registration tools that have been developed to perform the registration process in a semi-automatic way. Conclusions: By applying this routine, we were able to exactly locate structural information (e.g. mineral particle properties) in the 3D bone volume. In bone healing studies this will help to better understand basic formation, remodeling and mineralization processes. T3 - ZIB-Report - 15-01 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-53426 SN - 1438-0064 ER - TY - JOUR A1 - Hoerth, Rebecca M. A1 - Baum, Daniel A1 - Knötel, David A1 - Prohaska, Steffen A1 - Willie, Bettina M. A1 - Duda, Georg A1 - Hege, Hans-Christian A1 - Fratzl, Peter A1 - Wagermaier, Wolfgang T1 - Registering 2D and 3D Imaging Data of Bone during Healing JF - Connective Tissue Research Y1 - 2015 U6 - https://doi.org/10.3109/03008207.2015.1005210 VL - 56 IS - 2 SP - 133 EP - 143 PB - Taylor & Francis ER -