TY - JOUR A1 - Ziesche, Ralf F. A1 - Arlt, Tobias A1 - Finegan, Donal P. A1 - Heenan, Thomas M.M. A1 - Tengattini, Alessandro A1 - Baum, Daniel A1 - Kardjilov, Nikolay A1 - Markötter, Henning A1 - Manke, Ingo A1 - Kockelmann, Winfried A1 - Brett, Dan J.L. A1 - Shearing, Paul R. T1 - 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique JF - Nature Communications N2 - The temporally and spatially resolved tracking of lithium intercalation and electrode degradation processes are crucial for detecting and understanding performance losses during the operation of lithium-batteries. Here, high-throughput X-ray computed tomography has enabled the identification of mechanical degradation processes in a commercial Li/MnO2 primary battery and the indirect tracking of lithium diffusion; furthermore, complementary neutron computed tomography has identified the direct lithium diffusion process and the electrode wetting by the electrolyte. Virtual electrode unrolling techniques provide a deeper view inside the electrode layers and are used to detect minor fluctuations which are difficult to observe using conventional three dimensional rendering tools. Moreover, the ‘unrolling’ provides a platform for correlating multi-modal image data which is expected to find wider application in battery science and engineering to study diverse effects e.g. electrode degradation or lithium diffusion blocking during battery cycling. Y1 - 2020 U6 - https://doi.org/10.1038/s41467-019-13943-3 VL - 11 SP - 777 ER - TY - JOUR A1 - Hoerth, Rebecca M. A1 - Baum, Daniel A1 - Knötel, David A1 - Prohaska, Steffen A1 - Willie, Bettina M. A1 - Duda, Georg A1 - Hege, Hans-Christian A1 - Fratzl, Peter A1 - Wagermaier, Wolfgang T1 - Registering 2D and 3D Imaging Data of Bone during Healing JF - Connective Tissue Research Y1 - 2015 U6 - https://doi.org/10.3109/03008207.2015.1005210 VL - 56 IS - 2 SP - 133 EP - 143 PB - Taylor & Francis ER - TY - GEN A1 - Vohra, Sumit Kumar A1 - Harth, Philipp A1 - Isoe, Yasuko A1 - Bahl, Armin A1 - Fotowat, Haleh A1 - Engert, Florian A1 - Hege, Hans-Christian A1 - Baum, Daniel T1 - A Visual Interface for Exploring Hypotheses about Neural Circuits N2 - One of the fundamental problems in neurobiological research is to understand how neural circuits generate behaviors in response to sensory stimuli. Elucidating such neural circuits requires anatomical and functional information about the neurons that are active during the processing of the sensory information and generation of the respective response, as well as an identification of the connections between these neurons. With modern imaging techniques, both morphological properties of individual neurons as well as functional information related to sensory processing, information integration and behavior can be obtained. Given the resulting information, neurobiologists are faced with the task of identifying the anatomical structures down to individual neurons that are linked to the studied behavior and the processing of the respective sensory stimuli. Here, we present a novel interactive tool that assists neurobiologists in the aforementioned task by allowing them to extract hypothetical neural circuits constrained by anatomical and functional data. Our approach is based on two types of structural data: brain regions that are anatomically or functionally defined, and morphologies of individual neurons. Both types of structural data are interlinked and augmented with additional information. The presented tool allows the expert user to identify neurons using Boolean queries. The interactive formulation of these queries is supported by linked views, using, among other things, two novel 2D abstractions of neural circuits. The approach was validated in two case studies investigating the neural basis of vision-based behavioral responses in zebrafish larvae. Despite this particular application, we believe that the presented tool will be of general interest for exploring hypotheses about neural circuits in other species, genera and taxa. T3 - ZIB-Report - 23-07 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89932 SN - 1438-0064 ER - TY - JOUR A1 - Mikula, Natalia A1 - Dörffel, Tom A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - An Interactive Approach for Identifying Structure Definitions JF - Computer Graphics Forum N2 - Our ability to grasp and understand complex phenomena is essentially based on recognizing structures and relating these to each other. For example, any meteorological description of a weather condition and explanation of its evolution recurs to meteorological structures, such as convection and circulation structures, cloud fields and rain fronts. All of these are spatiotemporal structures, defined by time-dependent patterns in the underlying fields. Typically, such a structure is defined by a verbal description that corresponds to the more or less uniform, often somewhat vague mental images of the experts. However, a precise, formal definition of the structures or, more generally, concepts is often desirable, e.g., to enable automated data analysis or the development of phenomenological models. Here, we present a systematic approach and an interactive tool to obtain formal definitions of spatiotemporal structures. The tool enables experts to evaluate and compare different structure definitions on the basis of data sets with time-dependent fields that contain the respective structure. Since structure definitions are typically parameterized, an essential part is to identify parameter ranges that lead to desired structures in all time steps. In addition, it is important to allow a quantitative assessment of the resulting structures simultaneously. We demonstrate the use of the tool by applying it to two meteorological examples: finding structure definitions for vortex cores and center lines of temporarily evolving tropical cyclones. Ideally, structure definitions should be objective and applicable to as many data sets as possible. However, finding such definitions, e.g., for the common atmospheric structures in meteorology, can only be a long-term goal. The proposed procedure, together with the presented tool, is just a first systematic approach aiming at facilitating this long and arduous way. Y1 - 2022 U6 - https://doi.org/10.1111/cgf.14543 VL - 41 IS - 3 SP - 321 EP - 332 ER - TY - JOUR A1 - Aboulhassan, Amal A1 - Baum, Daniel A1 - Wodo, Olga A1 - Ganapathysubramanian, Baskar A1 - Amassian, Aram A1 - Hadwiger, Markus T1 - A Novel Framework for Visual Detection and Exploration of Performance Bottlenecks in Organic Photovoltaic Solar Cell Materials JF - Computer Graphics Forum N2 - The current characterization methods of the Bulk Heterojunction (BHJ) - the main material of the new Organic Photovoltaic solar cells - are limited to the analysis of global fabrication parameters. This reduces the efficiency of the BHJ design process, since it misses critical information about the local performance bottlenecks in the morphology of the material. In this paper, we propose a novel framework that fills this gap through visual charac- terization and exploration of local structure-performance correlations. We propose a new formula that correlates the structural features to the performance bottlenecks. Since research into BHJ materials is highly multidisci- plinary, we enable a visual feedback strategy that allows the scientists to build intuition about the best choices of fabrication parameters. We evaluate the usefulness of our proposed system by obtaining new BHJ characteri- zations. We furthermore show that our approach could reduce the previous work-flow time from days to minutes. Y1 - 2015 U6 - https://doi.org/10.1111/cgf.12652 VL - 34 IS - 3 SP - 401 EP - 410 PB - Wiley ER - TY - JOUR A1 - Aboulhassan, Amal A1 - Sicat, Ronell A1 - Baum, Daniel A1 - Wodo, Olga A1 - Hadwiger, Markus T1 - Comparative Visual Analysis of Structure-Performance Relations in Complex Bulk-Heterojunction Morphologies JF - Computer Graphics Forum N2 - The structure of Bulk-Heterojunction (BHJ) materials, the main component of organic photovoltaic solar cells, is very complex, and the relationship between structure and performance is still largely an open question. Overall, there is a wide spectrum of fabrication configurations resulting in different BHJ morphologies and correspondingly different performances. Current state- of-the-art methods for assessing the performance of BHJ morphologies are either based on global quantification of morphological features or simply on visual inspection of the morphology based on experimental imaging. This makes finding optimal BHJ structures very challenging. Moreover, finding the optimal fabrication parameters to get an optimal structure is still an open question. In this paper, we propose a visual analysis framework to help answer these questions through comparative visualization and parameter space exploration for local morphology features. With our approach, we enable scientists to explore multivariate correlations between local features and performance indicators of BHJ morphologies. Our framework is built on shape-based clustering of local cubical regions of the morphology that we call patches. This enables correlating the features of clusters with intuition-based performance indicators computed from geometrical and topological features of charge paths. Y1 - 2017 U6 - https://doi.org/10.1111/cgf.13191 VL - 36 IS - 3 SP - 329 EP - 339 PB - Wiley ER - TY - JOUR A1 - Herter, Felix A1 - Hege, Hans-Christian A1 - Hadwiger, Markus A1 - Lepper, Verena A1 - Baum, Daniel T1 - Thin-Volume Visualization on Curved Domains JF - Computer Graphics Forum N2 - Thin, curved structures occur in many volumetric datasets. Their analysis using classical volume rendering is difficult because parts of such structures can bend away or hide behind occluding elements. This problem cannot be fully compensated by effective navigation alone, because structure-adapted navigation in the volume is cumbersome and only parts of the structure are visible in each view. We solve this problem by rendering a spatially transformed view into the volume so that an unobscured visualization of the entire curved structure is obtained. As a result, simple and intuitive navigation becomes possible. The domain of the spatial transform is defined by a triangle mesh that is topologically equivalent to an open disc and that approximates the structure of interest. The rendering is based on ray-casting in which the rays traverse the original curved sub-volume. In order to carve out volumes of varying thickness, the lengths of the rays as well as the position of the mesh vertices can be easily modified in a view-controlled manner by interactive painting. We describe a prototypical implementation and demonstrate the interactive visual inspection of complex structures from digital humanities, biology, medicine, and materials science. Displaying the structure as a whole enables simple inspection of interesting substructures in their original spatial context. Overall, we show that transformed views utilizing ray-casting-based volume rendering supported by guiding surface meshes and supplemented by local, interactive modifications of ray lengths and vertex positions, represent a simple but versatile approach to effectively visualize thin, curved structures in volumetric data. Y1 - 2021 U6 - https://doi.org/10.1111/cgf.14296 VL - 40 IS - 3 SP - 147 EP - 157 PB - Wiley-Blackwell Publishing Ltd. CY - United Kingdom ER - TY - CHAP A1 - Harth, Philipp A1 - Bast, Arco A1 - Troidl, Jakob A1 - Meulemeester, Bjorge A1 - Pfister, Hanspeter A1 - Beyer, Johanna A1 - Oberlaender, Marcel A1 - Hege, Hans-Christian A1 - Baum, Daniel T1 - Rapid Prototyping for Coordinated Views of Multi-scale Spatial and Abstract Data: A Grammar-based Approach T2 - Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM) N2 - Visualization grammars are gaining popularity as they allow visualization specialists and experienced users to quickly create static and interactive views. Existing grammars, however, mostly focus on abstract views, ignoring three-dimensional (3D) views, which are very important in fields such as natural sciences. We propose a generalized interaction grammar for the problem of coordinating heterogeneous view types, such as standard charts (e.g., based on Vega-Lite) and 3D anatomical views. An important aspect of our web-based framework is that user interactions with data items at various levels of detail can be systematically integrated and used to control the overall layout of the application workspace. With the help of a concise JSON-based specification of the intended workflow, we can handle complex interactive visual analysis scenarios. This enables rapid prototyping and iterative refinement of the visual analysis tool in collaboration with domain experts. We illustrate the usefulness of our framework in two real-world case studies from the field of neuroscience. Since the logic of the presented grammar-based approach for handling interactions between heterogeneous web-based views is free of any application specifics, it can also serve as a template for applications beyond biological research. Y1 - 2023 U6 - https://doi.org/10.2312/vcbm.20231218 ER - TY - CHAP A1 - Paskin, Martha A1 - Dean, Mason A1 - Baum, Daniel A1 - von Tycowicz, Christoph T1 - A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks T2 - Computer Vision -- ECCV 2022 N2 - 3D shapes provide substantially more information than 2D images. However, the acquisition of 3D shapes is sometimes very difficult or even impossible in comparison with acquiring 2D images, making it necessary to derive the 3D shape from 2D images. Although this is, in general, a mathematically ill-posed problem, it might be solved by constraining the problem formulation using prior information. Here, we present a new approach based on Kendall’s shape space to reconstruct 3D shapes from single monocular 2D images. The work is motivated by an application to study the feeding behavior of the basking shark, an endangered species whose massive size and mobility render 3D shape data nearly impossible to obtain, hampering understanding of their feeding behaviors and ecology. 2D images of these animals in feeding position, however, are readily available. We compare our approach with state-of-the-art shape-based approaches both on human stick models and on shark head skeletons. Using a small set of training shapes, we show that the Kendall shape space approach is substantially more robust than previous methods and always results in plausible shapes. This is essential for the motivating application in which specimens are rare and therefore only few training shapes are available. Y1 - 2022 U6 - https://doi.org/10.1007/978-3-031-20086-1_21 SP - 363 EP - 379 PB - Springer Nature Switzerland ER - TY - GEN A1 - Paskin, Martha A1 - Baum, Daniel A1 - Dean, Mason N. A1 - von Tycowicz, Christoph T1 - A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks -- Source Code and Data N2 - Source code and novel dataset of basking shark head skeletons facilitating the reproduction of the results presented in 'A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks' - ECCV 2022. Y1 - 2022 U6 - https://doi.org/10.12752/8730 ER - TY - JOUR A1 - Schmitt, Kira A1 - Titschack, Jürgen A1 - Baum, Daniel T1 - Polyp-Cavity Segmentation of Cold-Water Corals guided by Ambient Occlusion and Ambient Curvature JF - Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM) N2 - The segmentation of cavities in three-dimensional images of arbitrary objects is a difficult problem since the cavities are usually connected to the outside of the object without any difference in image intensity. Hence, the information whether a voxel belongs to a cavity or the outside needs to be derived from the ambient space. If a voxel is enclosed by object material, it is very likely that this voxel belongs to a cavity. However, there are dense structures where a voxel might still belong to the outside even though it is surrounded to a large degree by the object. This is, for example, the case for coral colonies. Therefore, additional information needs to be considered to distinguish between those cases. In this paper, we introduce the notion of ambient curvature, present an efficient way to compute it, and use it to segment coral polyp cavities by integrating it into the ambient occlusion framework. Moreover, we combine the ambient curvature with other ambient information in a Gaussian mixture model, trained from a few user scribbles, resulting in a significantly improved cavity segmentation. We showcase the superiority of our approach using four coral colonies of very different morphological types. While in this paper we restrict ourselves to coral data, we believe that the concept of ambient curvature is also useful for other data. Furthermore, our approach is not restricted to curvature but can be easily extended to exploit any properties given on an object's surface, thereby adjusting it to specific applications. Y1 - 2022 U6 - https://doi.org/10.2312/vcbm.20221189 ER - TY - JOUR A1 - Vohra, Sumit Kumar A1 - Herrera, Kristian A1 - Tavhelidse-Suck, Tinatini A1 - Knoblich, Simon A1 - Seleit, Ali A1 - Boulanger-Weill, Jonathan A1 - Chambule, Sydney A1 - Aspiras, Ariel A1 - Santoriello, Cristina A1 - Randlett, Owen A1 - Wittbrodt, Joachim A1 - Aulehla, Alexander A1 - Lichtman, Jeff W. A1 - Fishman, Mark A1 - Hege, Hans-Christian A1 - Baum, Daniel A1 - Engert, Florian A1 - Isoe, Yasuko T1 - Multi-species community platform for comparative neuroscience in teleost fish N2 - Studying neural mechanisms in complementary model organisms from different ecological niches in the same animal class can leverage the comparative brain analysis at the cellular level. To advance such a direction, we developed a unified brain atlas platform and specialized tools that allowed us to quantitatively compare neural structures in two teleost larvae, medaka (Oryzias latipes) and zebrafish (Danio rerio). Leveraging this quantitative approach we found that most brain regions are similar but some subpopulations are unique in each species. Specifically, we confirmed the existence of a clear dorsal pallial region in the telencephalon in medaka lacking in zebrafish. Further, our approach allows for extraction of differentially expressed genes in both species, and for quantitative comparison of neural activity at cellular resolution. The web-based and interactive nature of this atlas platform will facilitate the teleost community’s research and its easy extensibility will encourage contributions to its continuous expansion. Y1 - 2024 U6 - https://doi.org/10.1101/2024.02.14.580400 ER - TY - GEN A1 - Hajarolasvadi, Noushin A1 - Baum, Daniel T1 - Data for Training the DeepOrientation Model: Simulated cryo-ET tomogram patches N2 - A major restriction to applying deep learning methods in cryo-electron tomography is the lack of annotated data. Many large learning-based models cannot be applied to these images due to the lack of adequate experimental ground truth. One appealing alternative solution to the time-consuming and expensive experimental data acquisition and annotation is the generation of simulated cryo-ET images. In this context, we exploit a public cryo-ET simulator called PolNet to generate three datasets of two macromolecular structures, namely the ribosomal complex 4v4r and Thermoplasma acidophilum 20S proteasome, 3j9i. We select these two specific particles to test whether our models work for macromolecular structures with and without rotational symmetry. The three datasets contain 50, 150, and 450 tomograms with a voxel size of 10 ̊A, respectively. Here, we publish patches of size 40 × 40 × 40 extracted from the medium-sized dataset with 26,703 samples of 4v4r and 40,671 samples of 3j9i. The original tomograms from which the samples were extracted are of size 500 × 500 × 250. Finally, it should be noted that the currently published test dataset is employed for reporting the results of our paper titled ”DeepOrientation: Deep Orientation Estimation of Macromolecules in Cryo-electron tomography” paper. Y1 - 2024 U6 - https://doi.org/10.12752/9686 ER -