TY - JOUR A1 - Eigen, Lennart A1 - Baum, Daniel A1 - Dean, Mason N. A1 - Werner, Daniel A1 - Wölfer, Jan A1 - Nyakatura, John A. T1 - Ontogeny of a tessellated surface: carapace growth of the longhorn cowfish Lactoria cornuta JF - Journal of Anatomy N2 - Biological armors derive their mechanical integrity in part from their geometric architectures, often involving tessellations: individual structural elements tiled together to form surface shells. The carapace of boxfish, for example, is comprised of mineralized polygonal plates, called scutes, arranged in a complex geometric pattern and nearly completely encasing the body. In contrast to artificial armors, the boxfish exoskeleton grows with the fish; the relationship between the tessellation and the gross structure of the armor is therefore critical to sustained protection throughout growth. To clarify whether or how the boxfish tessellation is maintained or altered with age, we quantify architectural aspects of the tessellated carapace of the longhorn cowfish Lactoria cornuta through ontogeny (across nearly an order of magnitude in standard length) and in a high-throughput fashion, using high-resolution microCT data and segmentation algorithms to characterize the hundreds of scutes that cover each individual. We show that carapace growth is canalized with little variability across individuals: rather than continually adding scutes to enlarge the carapace surface, the number of scutes is surprisingly constant, with scutes increasing in volume, thickness, and especially width with age. As cowfish and their scutes grow, scutes become comparatively thinner, with the scutes at the edges (weak points in a boxy architecture) being some of the thickest and most reinforced in younger animals and thinning most slowly across ontogeny. In contrast, smaller scutes with more variable curvature were found in the limited areas of more complex topology (e.g. around fin insertions, mouth, and anus). Measurements of Gaussian and mean curvature illustrate that cowfish are essentially tessellated boxes throughout life: predominantly zero curvature surfaces comprised of mostly flat scutes, and with scutes with sharp bends used sparingly to form box edges. Since growth of a curved, tiled surface with a fixed number of tiles would require tile restructuring to accommodate the surface’s changing radius of curvature, our results therefore illustrate a previously unappreciated advantage of the odd boxfish morphology: by having predominantly flat surfaces, it is the box-like body form that in fact permits a relatively straightforward growth system of this tessellated architecture (i.e. where material is added to scute edges). Our characterization of the ontogeny and maintenance of the carapace tessellation provides insights into the potentially conflicting mechanical, geometric and developmental constraints of this species, but also perspectives into natural strategies for constructing mutable tiled architectures. Y1 - 2022 U6 - https://doi.org/10.1111/joa.13692 VL - 241 IS - 3 SP - 565 EP - 580 PB - Wiley ER - TY - JOUR A1 - Kiewisz, Robert A1 - Fabig, Gunar A1 - Conway, William A1 - Baum, Daniel A1 - Needleman, Daniel A1 - Müller-Reichert, Thomas T1 - Three-dimensional structure of kinetochore-fibers in human mitotic spindles JF - eLife N2 - During cell division, kinetochore microtubules (KMTs) provide a physical linkage between the chromosomes and the rest of the spindle. KMTs in mammalian cells are organized into bundles, so-called kinetochore-fibers (k-fibers), but the ultrastructure of these fibers is currently not well characterized. Here we show by large-scale electron tomography that each k-fiber in HeLa cells in metaphase is composed of approximately nine KMTs, only half of which reach the spindle pole. Our comprehensive reconstructions allowed us to analyze the three-dimensional (3D) morphology of k-fibers and their surrounding MTs in detail. We found that k-fibers exhibit remarkable variation in circumference and KMT density along their length, with the pole-proximal side showing a broadening. Extending our structural analysis then to other MTs in the spindle, we further observed that the association of KMTs with non-KMTs predominantly occurs in the spindle pole regions. Our 3D reconstructions have implications for KMT growth and k-fiber self-organization models as covered in a parallel publication applying complementary live-cell imaging in combination with biophysical modeling (Conway et al., 2022). Finally, we also introduce a new visualization tool allowing an interactive display of our 3D spindle data that will serve as a resource for further structural studies on mitosis in human cells. Y1 - 2022 U6 - https://doi.org/10.7554/eLife.75459 VL - 11 SP - e75459 ER - TY - CHAP A1 - Harth, Philipp A1 - Vohra, Sumit A1 - Udvary, Daniel A1 - Oberlaender, Marcel A1 - Hege, Hans-Christian A1 - Baum, Daniel T1 - A Stratification Matrix Viewer for Analysis of Neural Network Data T2 - Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM) N2 - The analysis of brain networks is central to neurobiological research. In this context the following tasks often arise: (1) understand the cellular composition of a reconstructed neural tissue volume to determine the nodes of the brain network; (2) quantify connectivity features statistically; and (3) compare these to predictions of mathematical models. We present a framework for interactive, visually supported accomplishment of these tasks. Its central component, the stratification matrix viewer, allows users to visualize the distribution of cellular and/or connectional properties of neurons at different levels of aggregation. We demonstrate its use in four case studies analyzing neural network data from the rat barrel cortex and human temporal cortex. Y1 - 2022 U6 - https://doi.org/10.2312/vcbm.20221194 CY - Vienna, Austria ER - TY - JOUR A1 - Boelts, Jan A1 - Harth, Philipp A1 - Gao, Richard A1 - Udvary, Daniel A1 - Yanez, Felipe A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Oberlaender, Marcel A1 - Macke, Jakob H. T1 - Simulation-based inference for efficient identification of generative models in computational connectomics JF - PLOS Computational Biology N2 - Recent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neuronal networks using a hypothesized wiring rule in a generative model and to compare the resulting synthetic data with empirical data. However, most wiring rules have at least some free parameters, and identifying parameters that reproduce empirical data can be challenging as it often requires manual parameter tuning. Here, we propose to use simulation-based Bayesian inference (SBI) to address this challenge. Rather than optimizing a fixed wiring rule to fit the empirical data, SBI considers many parametrizations of a rule and performs Bayesian inference to identify the parameters that are compatible with the data. It uses simulated data from multiple candidate wiring rule parameters and relies on machine learning methods to estimate a probability distribution (the 'posterior distribution over parameters conditioned on the data') that characterizes all data-compatible parameters. We demonstrate how to apply SBI in computational connectomics by inferring the parameters of wiring rules in an in silico model of the rat barrel cortex, given in vivo connectivity measurements. SBI identifies a wide range of wiring rule parameters that reproduce the measurements. We show how access to the posterior distribution over all data-compatible parameters allows us to analyze their relationship, revealing biologically plausible parameter interactions and enabling experimentally testable predictions. We further show how SBI can be applied to wiring rules at different spatial scales to quantitatively rule out invalid wiring hypotheses. Our approach is applicable to a wide range of generative models used in connectomics, providing a quantitative and efficient way to constrain model parameters with empirical connectivity data. Y1 - 2023 U6 - https://doi.org/10.1371/journal.pcbi.1011406 VL - 19 IS - 9 ER - TY - JOUR A1 - Boelts, Jan A1 - Harth, Philipp A1 - Gao, Richard A1 - Udvary, Daniel A1 - Yanez, Felipe A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Oberlaender, Marcel A1 - Macke, Jakob H T1 - Simulation-based inference for efficient identification of generative models in connectomics JF - bioRxiv N2 - Recent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neural networks using a hypothesized wiring rule in a generative model and to compare the resulting synthetic data with empirical data. However, most wiring rules have at least some free parameters and identifying parameters that reproduce empirical data can be challenging as it often requires manual parameter tuning. Here, we propose to use simulation-based Bayesian inference (SBI) to address this challenge. Rather than optimizing a single rule to fit the empirical data, SBI considers many parametrizations of a wiring rule and performs Bayesian inference to identify the parameters that are compatible with the data. It uses simulated data from multiple candidate wiring rules and relies on machine learning methods to estimate a probability distribution (the `posterior distribution over rule parameters conditioned on the data') that characterizes all data-compatible rules. We demonstrate how to apply SBI in connectomics by inferring the parameters of wiring rules in an in silico model of the rat barrel cortex, given in vivo connectivity measurements. SBI identifies a wide range of wiring rule parameters that reproduce the measurements. We show how access to the posterior distribution over all data-compatible parameters allows us to analyze their relationship, revealing biologically plausible parameter interactions and enabling experimentally testable predictions. We further show how SBI can be applied to wiring rules at different spatial scales to quantitatively rule out invalid wiring hypotheses. Our approach is applicable to a wide range of generative models used in connectomics, providing a quantitative and efficient way to constrain model parameters with empirical connectivity data. Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89890 ER - TY - GEN A1 - Paetsch, Olaf A1 - Baum, Daniel A1 - Ebell, Gino A1 - Ehrig, Karsten A1 - Heyn, Andreas A1 - Meinel, Dietmar A1 - Prohaska, Steffen T1 - Korrosionsverfolgung in 3D-computertomographischen Aufnahmen von Stahlbetonproben N2 - Kurzfassung. Durch die Alkalität des Betons wird Betonstahl dauerhaft vor Korrosion geschützt. Infolge von Chlorideintrag kann dieser Schutz nicht länger aufrechterhalten werden und führt zu Lochkorrosion. Die zerstörungsfreie Prüfung von Stahlbetonproben mit 3D-CT bietet die Möglichkeit, eine Probe mehrfach gezielt vorzuschädigen und den Korrosionsfortschritt zu untersuchen. Zur Quantifizierung des Schädigungsgrades müssen die bei dieser Untersuchung anfallenden großen Bilddaten mit Bildverarbeitungsmethoden ausgewertet werden. Ein wesentlicher Schritt dabei ist die Segmentierung der Bilddaten, bei der zwischen Korrosionsprodukt (Rost), Betonstahl (BSt), Beton, Rissen, Poren und Umgebung unterschieden werden muss. Diese Segmentierung bildet die Grundlage für statistische Untersuchungen des Schädigungsfortschritts. Hierbei sind die Änderung der BSt-Geometrie, die Zunahme von Korrosionsprodukten und deren Veränderung über die Zeit sowie ihrer räumlichen Verteilung in der Probe von Interesse. Aufgrund der Größe der CT-Bilddaten ist eine manuelle Segmentierung nicht durchführbar, so dass automatische Verfahren unabdingbar sind. Dabei ist insbesondere die Segmentierung der Korrosionsprodukte in den Bilddaten ein schwieriges Problem. Allein aufgrund der Grauwerte ist eine Zuordnung nahezu unmöglich, denn die Grauwerte von Beton und Korrosionsprodukt unterscheiden sich kaum. Eine formbasierte Suche ist nicht offensichtlich, da die Korrosionsprodukte in Beton diffuse Formen haben. Allerdings lässt sich Vorwissen über die Ausbreitung der Korrosionsprodukte nutzen. Sie bilden sich in räumlicher Nähe des BSt (in Bereichen vorheriger Volumenabnahme des BSt), entlang von Rissen sowie in Porenräumen, die direkt am BSt und in dessen Nahbereich liegen. Davon ausgehend wird vor der Korrosionsprodukterkennung zunächst eine BSt-Volumen-, Riss- und Porenerkennung durchgeführt. Dieser in der Arbeit näher beschriebene Schritt erlaubt es, halbautomatisch Startpunkte (Seed Points) für die Korrosionsprodukterkennung zu finden. Weiterhin werden verschiedene in der Bildverarbeitung bekannte Algorithmen auf ihre Eignung untersucht werden. T3 - ZIB-Report - 14-24 KW - Beton KW - Korrosionserkennung KW - Bildverarbeitung KW - Computertomografie KW - concrete KW - corrosiondetection KW - image processing KW - computed tomography Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-50912 SN - 1438-0064 ER - TY - JOUR A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - Ligand Excluded Surface: A New Type of Molecular Surface JF - IEEE Transactions on Visualization and Computer Graphics N2 - The most popular molecular surface in molecular visualization is the solvent excluded surface (SES). It provides information about the accessibility of a biomolecule for a solvent molecule that is geometrically approximated by a sphere. During a period of almost four decades, the SES has served for many purposes – including visualization, analysis of molecular interactions and the study of cavities in molecular structures. However, if one is interested in the surface that is accessible to a molecule whose shape differs significantly from a sphere, a different concept is necessary. To address this problem, we generalize the definition of the SES by replacing the probe sphere with the full geometry of the ligand defined by the arrangement of its van der Waals spheres. We call the new surface ligand excluded surface (LES) and present an efficient, grid-based algorithm for its computation. Furthermore, we show that this algorithm can also be used to compute molecular cavities that could host the ligand molecule. We provide a detailed description of its implementation on CPU and GPU. Furthermore, we present a performance and convergence analysis and compare the LES for several molecules, using as ligands either water or small organic molecules. Y1 - 2014 U6 - https://doi.org/10.1109/TVCG.2014.2346404 VL - 20 IS - 12 SP - 2486 EP - 2495 ER - TY - GEN A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - Ligand Excluded Surface: A New Type of Molecular Surface N2 - The most popular molecular surface in molecular visualization is the solvent excluded surface (SES). It provides information about the accessibility of a biomolecule for a solvent molecule that is geometrically approximated by a sphere. During a period of almost four decades, the SES has served for many purposes – including visualization, analysis of molecular interactions and the study of cavities in molecular structures. However, if one is interested in the surface that is accessible to a molecule whose shape differs significantly from a sphere, a different concept is necessary. To address this problem, we generalize the definition of the SES by replacing the probe sphere with the full geometry of the ligand defined by the arrangement of its van der Waals spheres. We call the new surface ligand excluded surface (LES) and present an efficient, grid-based algorithm for its computation. Furthermore, we show that this algorithm can also be used to compute molecular cavities that could host the ligand molecule. We provide a detailed description of its implementation on CPU and GPU. Furthermore, we present a performance and convergence analysis and compare the LES for several molecules, using as ligands either water or small organic molecules. T3 - ZIB-Report - 14-27 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-51194 SN - 1438-0064 ER - TY - GEN A1 - Redemann, Stefanie A1 - Weber, Britta A1 - Möller, Marit A1 - Verbavatz, Jean-Marc A1 - Hyman, Anthony A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Müller-Reichert, Thomas T1 - The Segmentation of Microtubules in Electron Tomograms Using Amira T2 - Mitosis: Methods and Protocols Y1 - 2014 U6 - https://doi.org/10.1007/978-1-4939-0329-0_12 SP - 261 EP - 278 PB - Springer ER - TY - GEN A1 - Knötel, David A1 - Seidel, Ronald A1 - Prohaska, Steffen A1 - Dean, Mason N. A1 - Baum, Daniel T1 - Automated Segmentation of Complex Patterns in Biological Tissues: Lessons from Stingray Tessellated Cartilage N2 - Introduction – Many biological structures show recurring tiling patterns on one structural level or the other. Current image acquisition techniques are able to resolve those tiling patterns to allow quantitative analyses. The resulting image data, however, may contain an enormous number of elements. This renders manual image analysis infeasible, in particular when statistical analysis is to be conducted, requiring a larger number of image data to be analyzed. As a consequence, the analysis process needs to be automated to a large degree. In this paper, we describe a multi-step image segmentation pipeline for the automated segmentation of the calcified cartilage into individual tesserae from computed tomography images of skeletal elements of stingrays. Methods – Besides applying state-of-the-art algorithms like anisotropic diffusion smoothing, local thresholding for foreground segmentation, distance map calculation, and hierarchical watershed, we exploit a graph-based representation for fast correction of the segmentation. In addition, we propose a new distance map that is computed only in the plane that locally best approximates the calcified cartilage. This distance map drastically improves the separation of individual tesserae. We apply our segmentation pipeline to hyomandibulae from three individuals of the round stingray (Urobatis halleri), varying both in age and size. Results – Each of the hyomandibula datasets contains approximately 3000 tesserae. To evaluate the quality of the automated segmentation, four expert users manually generated ground truth segmentations of small parts of one hyomandibula. These ground truth segmentations allowed us to compare the segmentation quality w.r.t. individual tesserae. Additionally, to investigate the segmentation quality of whole skeletal elements, landmarks were manually placed on all tesserae and their positions were then compared to the segmented tesserae. With the proposed segmentation pipeline, we sped up the processing of a single skeletal element from days or weeks to a few hours. T3 - ZIB-Report - 17-62 KW - micro-CT KW - image segmentation KW - 2D distance map KW - hierarchical watershed KW - stingray KW - tesserae KW - biological tilings KW - Amira Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65785 SN - 1438-0064 ER - TY - CHAP A1 - Klindt, Marco A1 - Prohaska, Steffen A1 - Baum, Daniel A1 - Hege, Hans-Christian ED - Arnold, David ED - Kaminski, Jaime ED - Niccolucci, Franco ED - Stork, Andre T1 - Conveying Archaeological Contexts to Museum Visitors: Case Study Pergamon Exhibition T2 - VAST12: The 13th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage - Short Papers Y1 - 2012 UR - http://diglib.eg.org/EG/DL/PE/VAST/VAST12S/025-028.pdf U6 - https://doi.org/10.2312/PE/VAST/VAST12S/025-028 SP - 25 EP - 28 PB - Eurographics Association CY - Brighton, UK ER - TY - CHAP A1 - Klindt, Marco A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Hege, Hans-Christian T1 - iCon.text – a customizable iPad app for kiosk applications in museum exhibitions T2 - EVA 2012 Berlin Y1 - 2012 SP - 150 EP - 155 PB - Gesellschaft zur Förderung angewandter Informatik e.V. CY - Volmerstraße 3, 12489 Berlin ER - TY - CHAP A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Bondar, Ana-Nicoleta A1 - Hege, Hans-Christian T1 - Dynamic Channels in Biomolecular Systems: Path Analysis and Visualization T2 - Proceedings of IEEE Symposium on Biological Data Visualization (biovis’12) Y1 - 2012 U6 - https://doi.org/10.1109/BioVis.2012.6378599 SP - 99 EP - 106 ER - TY - CHAP A1 - Schmidt-Ehrenberg, Johannes A1 - Baum, Daniel A1 - Hege, Hans-Christian ED - J. Moorhead, Robert ED - Gross, Markus ED - I. Joy, Kenneth T1 - Visualizing Dynamic Molecular Conformations T2 - Proceedings of IEEE Visualization 2002 Y1 - 2002 U6 - https://doi.org/10.1109/VISUAL.2002.1183780 SP - 235 EP - 242 PB - IEEE Computer Society Press CY - Boston MA, USA ER - TY - JOUR A1 - Rigort, Alexander A1 - Günther, David A1 - Hegerl, Reiner A1 - Baum, Daniel A1 - Weber, Britta A1 - Prohaska, Steffen A1 - Medalia, Ohad A1 - Baumeister, Wolfgang A1 - Hege, Hans-Christian T1 - Automated segmentation of electron tomograms for a quantitative description of actin filament networks JF - Journal of Structural Biology Y1 - 2012 U6 - https://doi.org/10.1016/j.jsb.2011.08.012 VL - 177 SP - 135 EP - 144 ER - TY - JOUR A1 - Schmidt-Ehrenberg, Johannes A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - Visually stunning - Molecular conformations JF - The Biochemist Y1 - 2001 VL - 23 IS - 5 SP - 22 EP - 26 ER - TY - JOUR A1 - Kratz, Andrea A1 - Baum, Daniel A1 - Hotz, Ingrid T1 - Anisotropic Sampling of Planar and Two-Manifold Domains for Texture Generation and Glyph Distribution JF - Transactions on Visualization and Computer Graphics (TVCG) Y1 - 2013 U6 - https://doi.org/10.1109/TVCG.2013.83 VL - 19 SP - 1782 EP - 1794 ER - TY - CHAP A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Kalbe, Ute A1 - Witt, Karl Josef T1 - Automatic Extraction and Analysis of Realistic Pore Structures from µCT Data for Pore Space Characterization of Graded Soil T2 - Proceedings of the 6th International Conference on Scour and Erosion (ICSE-6) Y1 - 2012 SP - 345 EP - 352 ER - TY - JOUR A1 - Weber, Britta A1 - Greenan, Garrett A1 - Prohaska, Steffen A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Müller-Reichert, Thomas A1 - Hyman, Anthony A1 - Verbavatz, Jean-Marc T1 - Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos JF - Journal of Structural Biology Y1 - 2012 UR - http://www.sciencedirect.com/science/article/pii/S1047847711003509 U6 - https://doi.org/10.1016/j.jsb.2011.12.004 VL - 178 IS - 2 SP - 129 EP - 138 ER - TY - JOUR A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - Voronoi-Based Extraction and Visualization of Molecular Paths JF - IEEE Transactions on Visualization and Computer Graphics Y1 - 2011 U6 - https://doi.org/10.1109/TVCG.2011.259 VL - 17 IS - 12 SP - 2025 EP - 2034 ER - TY - JOUR A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Hege, Hans-Christian T1 - Accelerated Visualization of Dynamic Molecular Surfaces JF - Comput. Graph. Forum Y1 - 2010 U6 - https://doi.org/10.1111/j.1467-8659.2009.01693.x VL - 29 SP - 943 EP - 952 ER - TY - JOUR A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Bondar, Ana-Nicoleta A1 - Hege, Hans-Christian T1 - Exploring cavity dynamics in biomolecular systems JF - BMC Bioinformatics Y1 - 2013 U6 - https://doi.org/10.1186/1471-2105-14-S19-S5 VL - 14 ET - (Suppl 19):S5 ER - TY - GEN A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Wiebel, Alexander A1 - Prohaska, Steffen A1 - Hege, Hans-Christian ED - Bremer, Peer-Timo ED - Hotz, Ingrid ED - Pascucci, Valerio ED - Peikert, Ronald T1 - Definition, Extraction, and Validation of Pore Structures in Porous Materials BT - Theory, Algorithms, and Applications T2 - Topological Methods in Data Analysis and Visualization III Y1 - 2014 U6 - https://doi.org/10.1007/978-3-319-04099-8_15 SP - 235 EP - 248 PB - Springer ER - TY - JOUR A1 - Titschack, Jürgen A1 - Baum, Daniel A1 - De Pol-Holz, Ricardo A1 - López Correa, Matthias A1 - Forster, Nina A1 - Flögel, Sascha A1 - Hebbeln, Dierk A1 - Freiwald, André T1 - Aggradation and carbonate accumulation of Holocene Norwegian cold-water coral reefs JF - Sedimentology Y1 - 2015 U6 - https://doi.org/10.1111/sed.12206 VL - 62 IS - 7 SP - 1873 EP - 1898 PB - Wiley ER - TY - JOUR A1 - Cournia, Zoe A1 - Allen, Toby W. A1 - Andricioaei, Ioan A1 - Antonny, Bruno A1 - Baum, Daniel A1 - Brannigan, Grace A1 - Buchete, Nicolae-Viorel A1 - Deckman, Jason T. A1 - Delemotte, Lucie A1 - del Val, Coral A1 - Friedman, Ran A1 - Gkeka, Paraskevi A1 - Hege, Hans-Christian A1 - Hénin, Jérôme A1 - Kasimova, Marina A. A1 - Kolocouris, Antonios A1 - Klein, Michael L. A1 - Khalid, Syma A1 - Lemieux, Joanne A1 - Lindow, Norbert A1 - Roy, Mahua A1 - Selent, Jana A1 - Tarek, Mounir A1 - Tofoleanu, Florentina A1 - Vanni, Stefano A1 - Urban, Sinisa A1 - Wales, David J. A1 - Smith, Jeremy C. A1 - Bondar, Ana-Nicoleta T1 - Membrane Protein Structure, Function and Dynamics: A Perspective from Experiments and Theory JF - Journal of Membrane Biology Y1 - 2015 U6 - https://doi.org/10.1007/s00232-015-9802-0 VL - 248 IS - 4 SP - 611 EP - 640 ER - TY - JOUR A1 - Färber, Claudia A1 - Titschack, Jürgen A1 - Schönberg, Christine H. L. A1 - Ehrig, Karsten A1 - Boos, Karin A1 - Baum, Daniel A1 - Illerhaus, Bernd A1 - Asgaard, Ulla A1 - Bromley, Richard G. A1 - Freiwald, André A1 - Wisshak, Max T1 - Long-term macrobioerosion in the Mediterranean Sea assessed by micro-computed tomography JF - Biogeosciences N2 - Biological erosion is a key process for the recycling of carbonate and the formation of calcareous sediments in the oceans. Experimental studies showed that bioerosion is subject to distinct temporal variability, but previous long-term studies were restricted to tropical waters. Here, we present results from a 14-year bioerosion experiment that was carried out along the rocky limestone coast of the island of Rhodes, Greece, in the Eastern Mediterranean Sea, in order to monitor the pace at which bioerosion affects carbonate substrate and the sequence of colonisation by bioeroding organisms. Internal macrobioerosion was visualised and quantified by micro-computed tomography and computer-algorithm-based segmentation procedures. Analysis of internal macrobioerosion traces revealed a dominance of bioeroding sponges producing eight types of characteristic Entobia cavity networks, which were matched to five different clionaid sponges by spicule identification in extracted tissue. The morphology of the entobians strongly varied depending on the species of the producing sponge, its ontogenetic stage, available space, and competition by other bioeroders. An early community developed during the first 5 years of exposure with initially very low macrobioerosion rates and was followed by an intermediate stage when sponges formed large and more diverse entobians and bioerosion rates increased. After 14 years, 30 % of the block volumes were occupied by boring sponges, yielding maximum bioerosion rates of 900 g m^−2 yr^−1. A high spatial variability in macrobioerosion prohibited clear conclusions about the onset of macrobioerosion equilibrium conditions. This highlights the necessity of even longer experimental exposures and higher replication at various factor levels in order to better understand and quantify temporal patterns of macrobioerosion in marine carbonate environments. Y1 - 2016 U6 - https://doi.org/10.5194/bg-13-3461-2016 VL - 13 IS - 11 SP - 3461 EP - 3474 CY - http://www.biogeosciences.net/13/3461/2016/ ER - TY - GEN A1 - Kozlikova, Barbora A1 - Krone, Michael A1 - Falk, Martin A1 - Lindow, Norbert A1 - Baaden, Marc A1 - Baum, Daniel A1 - Viola, Ivan A1 - Parulek, Julius A1 - Hege, Hans-Christian T1 - Visualization of Biomolecular Structures: State of the Art N2 - Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets. T3 - ZIB-Report - 15-63 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57217 SN - 1438-0064 ER - TY - CHAP A1 - Paetsch, Olaf A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Ehrig, Karsten A1 - Meinel, Dietmar A1 - Ebell, Gino T1 - 3D Corrosion Detection in Time-dependent CT Images of Concrete T2 - DIR-2015 Proceedings N2 - In civil engineering, the corrosion of steel reinforcements in structural elements of concrete bares a risk of stability-reduction, mainly caused by the exposure to chlorides. 3D computed tomography (CT) reveals the inner structure of concrete and allows one to investigate the corrosion with non-destructive testing methods. To carry out such investigations, specimens with a large artificial crack and an embedded steel rebar have been manufactured. 3D CT images of those specimens were acquired in the original state. Subsequently three cycles of electrochemical pre-damaging together with CT imaging were applied. These time series have been evaluated by means of image processing algorithms to segment and quantify the corrosion products. Visualization of the results supports the understanding of how corrosion propagates into cracks and pores. Furthermore, pitting of structural elements can be seen without dismantling. In this work, several image processing and visualization techniques are presented that have turned out to be particularly effective for the visualization and segmentation of corrosion products. Their combination to a workflow for corrosion analysis is the main contribution of this work. Y1 - 2015 UR - http://www.ndt.net/events/DIR2015/app/content/Paper/36_Paetsch.pdf ER - TY - GEN A1 - Knötel, David A1 - Seidel, Ronald A1 - Weaver, James C. A1 - Baum, Daniel A1 - Dean, Mason N. T1 - Segmentation of the Tessellated Mineralized Endoskeleton of Sharks and Rays T2 - Poster, Tomography for Scientific Advancement symposium (ToScA), Manchester, UK, September 3 - 4, 2015 N2 - The cartilaginous endoskeletons of sharks and rays are covered by tiles of mineralized cartilage called tesserae that enclose areas of unmineralized cartilage. These tesselated layers are vital to the growth as well as the material properties of the skeleton, providing both flexibility and strength. An understanding of the principles behind the tiling of the mineralized layer requires a quantitative analysis of shark and ray skeletal tessellation. However, since a single skeletal element comprises several thousand tesserae, manual segmentation is infeasible. We developed an automated segmentation pipeline that, working from micro-CT data, allows quantification of all tesserae in a skeletal element in less than an hour. Our segmentation algorithm relies on aspects we have learned of general tesseral morphology. In micro-CT scans, tesserae usually appear as round or star-shaped plate-like tiles, wider than deep and connected by mineralized intertesseral joints. Based on these observations, we exploit the distance map of the mineralized layer to separate individual tiles using a hierarchical watershed algorithm. Utilizing a two-dimensional distance map that measures the distance in the plane of the mineralized layer only greatly improves the segmentation. We developed post-processing techniques to quickly correct segmentation errors in regions where tesseral shape differs from the assumed shape. Evaluation of our results is done qualitatively by visual comparison with raw datasets, and quantitatively by comparison to manual segmentations. Furthermore, we generate two-dimensional abstractions of the tiling network based on the neighborhood, allowing representation of complex, biological forms as simpler geometries. We apply our newly developed techniques to the analysis of the left and right hyomandibulae of four ages of stingray enabling the first quantitative analyses of the tesseral tiling structure, while clarifying how these patterns develop across ontogeny. Y1 - 2015 ER - TY - GEN A1 - Knötel, David A1 - Seidel, Ronald A1 - Hosny, Ahmed A1 - Zaslansky, Paul A1 - Weaver, James C. A1 - Baum, Daniel A1 - Dean, Mason N. T1 - Understanding the Tiling Rules of the Tessellated Mineralized Endoskeleton of Sharks and Rays T2 - Poster, Euro Bio-inspired Materials 2016, Potsdam, Germany, February 22 - 25, 2016 N2 - The endoskeletons of sharks and rays are composed of an unmineralized cartilaginous core, covered in an outer layer of mineralized tiles called tesserae. The tessellated layer is vital to the growth as well as the material properties of the skeletal element, providing both flexibility and strength. However, characterizing the relationship between tesseral size and shape, and skeletal growth and mechanics is challenging because tesserae are small (a few hundred micrometers wide), anchored to the surrounding tissue in complex three-dimensional ways, and occur in huge numbers. Using a custom-made semi-automatic segmentation algorithm, we present the first quantitative and three-dimensional description of tesserae in micro-CT scans of whole skeletal elements. Our segmentation algorithm relies on aspects we have learned of general tesseral morphology. We exploit the distance map of the mineralized layer to separate individual tiles using a hierarchical watershed algorithm. Additionally, we have developed post-processing techniques to quickly correct segmentation errors. Our data reveals that the tessellation is not regular, with tesserae showing a great range of shapes, sizes and number of neighbors. This is partly region-dependent: for example, thick, columnar tesserae are arranged in series along convex edges with small radius of curvature (RoC), whereas more brick-or disc-shaped tesserae are found in planar areas. We apply our newly developed techniques on the left and right hyomandibula (skeletal elements supporting the jaws) from four different ages of a stingray species, to clarify how tiling patterns develop across ontogeny and differ within and between individuals. We evaluate the functional consequences of tesseral morphologies using finite element analysis and 3d-printing, for a better understanding of shark skeletal mechanics, but also to extract fundamental engineering design principles of tiling arrangements on load-bearing three-dimensional objects. Y1 - 2016 ER - TY - GEN A1 - Seidel, Ronald A1 - Knötel, David A1 - Baum, Daniel A1 - Weaver, James C. A1 - Dean, Mason N. T1 - Material and structural characterization of mineralized elasmobranch cartilage – lessons in repeated tiling patterns in mechanically loaded 3D objects T2 - Poster, Tomography for Scientific Advancement symposium (ToScA), London, UK, September 1 - 3, 2014 N2 - Biological tissues achieve a wide range of properties and function, however with limited components. The organization of these constituent parts is a decisive factor in the impressive properties of biological materials, with tissues often exhibiting complex arrangements of hard and soft materials. The “tessellated” cartilage of the endoskeleton of sharks and rays, for example, is a natural composite of mineralized polygonal tiles (tesserae), collagen fiber bundles, and unmineralized cartilage, resulting in a material that is both flexible and strong, with optimal stiffness. The properties of the materials and the tiling geometry are vital to the growth and mechanics of the system, but had not been investigated due to the technical challenges involved. We use high-resolution materials characterization techniques (qBEI, µCT) to show that tesserae exhibit great variability in mineral density, supporting theories of accretive growth mechanisms. We present a developmental series of tesserae and outline the development of unique structural features that appear to function in load bearing and energy dissipation, with some structural features far exceeding cortical bone’s mineral content and tissue stiffness. To examine interactions among tesserae, we developed an advanced tiling-recognition-algorithm to semi-automatically detect and isolate individual tiles in microCT scans of tesseral mats. The method allows quantification of shape variation across a wide area, allowing localization of regions of high/low reinforcement or flexibility in the skeleton. The combination of our material characterization and visualization techniques allows the first quantitative 3d description of anatomy and material properties of tesserae and the organization of tesseral networks in elasmobranch mineralized cartilage, providing insight into form-function relationships of the repeating tiled pattern. We aim to combine detailed knowledge of intra-tesseral morphology and mineralization to model the relationships of tesseral shapes and skeletal surface curvature, to understand fundamental tiling laws important for complex, mechanically loaded 3d objects. Y1 - 2014 ER - TY - GEN A1 - Titschack, Jürgen A1 - Baum, Daniel T1 - Advanced computed tomography analyses of cold-water coral mound cores: new insights into mound formation processes T2 - Poster, 19th International Sedimentological Congress, Geneva, Switzerland, 2014, August 18 - 22 Y1 - 2014 ER - TY - GEN A1 - Titschack, Jürgen A1 - Baum, Daniel T1 - Ambient occlusion - a powerful algorithm to segment skeletal intrapores and gastral cavities in dendrophyllid cold-water corals T2 - Poster, 31st IAS Meeting of Sedimentology, 2015, June 22-25, Kraków, Poland Y1 - 2015 ER - TY - GEN A1 - Dean, Mason N. A1 - Hosny, Ahmed A1 - Seidel, Ronald A1 - Baum, Daniel T1 - Biological strategies for fatique and wear avoidance: lessons from stingray skeletons and teeth T2 - Poster, Tomography for Scientific Advancement symposium (ToScA) Y1 - 2016 ER - TY - GEN A1 - Krone, Michael A1 - Kozlikova, Barbora A1 - Lindow, Norbert A1 - Baaden, Marc A1 - Baum, Daniel A1 - Parulek, Julius A1 - Hege, Hans-Christian A1 - Viola, Ivan T1 - Visual Analysis of Biomolecular Cavities: State of the Art N2 - In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification for cavity detection approaches and structure them into four distinct classes: grid-based, Voronoi-based, surface-based, and probe-based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding visualization technologies starting with direct 3D visualization, followed with non-spatial visualization techniques that for example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an outlook on future challenges in the field. T3 - ZIB-Report - 16-42 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60193 SN - 1438-0064 ER - TY - GEN A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Wiebel, Alexander A1 - Prohaska, Steffen A1 - Hege, Hans-Christian T1 - Definition, Extraction, and Validation of Pore Structures in Porous Materials N2 - An intuitive and sparse representation of the void space of porous materials supports the efficient analysis and visualization of interesting qualitative and quantitative parameters of such materials. We introduce definitions of the elements of this void space, here called pore space, based on its distance function, and present methods to extract these elements using the extremal structures of the distance function. The presented methods are implemented by an image processing pipeline that determines pore centers, pore paths and pore constrictions. These pore space elements build a graph that represents the topology of the pore space in a compact way. The representations we derive from μCT image data of realistic soil specimens enable the computation of many statistical parameters and, thus, provide a basis for further visual analysis and application-specific developments. We introduced parts of our pipeline in previous work. In this chapter, we present additional details and compare our results with the analytic computation of the pore space elements for a sphere packing in order to show the correctness of our graph computation. T3 - ZIB-Report - 13-56 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42510 SN - 1438-0064 ER - TY - GEN A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Günster, Jens A1 - Krauß-Schüler, Stefanie T1 - Adapting trabecular structures for 3D printing: an image processing approach based on µCT data N2 - Materials with a trabecular structure notably combine advantages such as lightweight, reasonable strength, and permeability for fluids. This combination of advantages is especially interesting for tissue engineering in trauma surgery and orthopedics. Bone-substituting scaffolds for instance are designed with a trabecular structure in order to allow cell migration for bone ingrowth and vascularization. An emerging and recently very popular technology to produce such complex, porous structures is 3D printing. However, several technological aspects regarding the scaffold architecture, the printable resolution, and the feature size have to be considered when fabricating scaffolds for bone tissue replacement and regeneration. Here, we present a strategy to assess and prepare realistic trabecular structures for 3D printing using image analysis with the aim of preserving the structural elements. We discuss critical conditions of the printing system and present a 3-stage approach to adapt a trabecular structure from $\mu$CT data while incorporating knowledge about the printing system. In the first stage, an image-based extraction of solid and void structures is performed, which results in voxel- and graph-based representations of the extracted structures. These representations not only allow us to quantify geometrical properties such as pore size or strut geometry and length. But, since the graph represents the geometry and the topology of the initial structure, it can be used in the second stage to modify and adjust feature size, volume and sample size in an easy and consistent way. In the final reconstruction stage, the graph is then converted into a voxel representation preserving the topology of the initial structure. This stage generates a model with respect to the printing conditions to ensure a stable and controlled voxel placement during the printing process. T3 - ZIB-Report - 17-26 KW - trabecular structures KW - image-based analysis KW - additive manufacturing KW - printability Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64004 SN - 1438-0064 ER - TY - CHAP A1 - Baum, Daniel A1 - Mahlow, Kristin A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Müller, Johannes A1 - Hege, Hans-Christian T1 - The Potential of Surface-based Geometric Morphometrics for Evolutionary Studies: An Example using Dwarf Snakes (Eirenis) T2 - Abstract in DigitalSpecimen 2014 N2 - Geometric morphometrics plays an important role in evolutionary studies. The state-of-the-art in this field are landmark-based methods. Since the landmarks usually need to be placed manually, only a limited number of landmarks are generally used to represent the shape of an anatomical structure. As a result, shape characteristics that cannot be properly represented by small sets of landmarks are disregarded. In this study, we present a method that is free of this limitation. The method takes into account the whole shape of an anatomical structure, which is represented as a surface, hence the term ‘surface-based morphometrics’. Correspondence between two surfaces is established by defining a partitioning of the surfaces into homologous surface patches. The first step for the generation of a surface partitioning is to place landmarks on the surface. Subsequently, the landmarks are connected by curves lying on the surface. The curves, called ‘surface paths’, might either follow specific anatomical features or they can be geodesics, that is, shortest paths on the surface. One important requirement, however, is that the resulting surface path networks are topologically equivalent across all surfaces. Once the surface path networks have been defined, the surfaces are decomposed into patches according to the path networks. This approach has several advantages. One of them is that we can discretize the surface by as many points as desired. Thus, even fine shape details can be resolved if this is of interest for the study. Since a point discretization is used, another advantage is that well-established analysis methods for landmark-based morphometrics can be utilized. Finally, the shapes can be easily morphed into one another, thereby greatly supporting the understanding of shape changes across all considered specimens. To show the potential of the described method for evolutionary studies of biological specimens, we applied the method to the para-basisphenoid complex of the snake genus Eirenis. By using this anatomical structure as example, we present all the steps that are necessary for surface-based morphometrics, including the segmentation of the para-basisphenoid complex from micro-CT data sets. We also show some first results using statistical analysis as well as classification methods based on the presented technique. Y1 - 2014 ER - TY - JOUR A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Günster, Jens A1 - Krauß-Schüler, Stefanie T1 - Adapting trabecular structures for 3D printing: an image processing approach based on µCT data JF - Biomedical Physics & Engineering Express N2 - Materials with a trabecular structure notably combine advantages such as lightweight, reasonable strength, and permeability for fluids. This combination of advantages is especially interesting for tissue engineering in trauma surgery and orthopedics. Bone-substituting scaffolds for instance are designed with a trabecular structure in order to allow cell migration for bone ingrowth and vascularization. An emerging and recently very popular technology to produce such complex, porous structures is 3D printing. However, several technological aspects regarding the scaffold architecture, the printable resolution, and the feature size have to be considered when fabricating scaffolds for bone tissue replacement and regeneration. Here, we present a strategy to assess and prepare realistic trabecular structures for 3D printing using image analysis with the aim of preserving the structural elements. We discuss critical conditions of the printing system and present a 3-stage approach to adapt a trabecular structure from $\mu$CT data while incorporating knowledge about the printing system. In the first stage, an image-based extraction of solid and void structures is performed, which results in voxel- and graph-based representations of the extracted structures. These representations not only allow us to quantify geometrical properties such as pore size or strut geometry and length. But, since the graph represents the geometry and the topology of the initial structure, it can be used in the second stage to modify and adjust feature size, volume and sample size in an easy and consistent way. In the final reconstruction stage, the graph is then converted into a voxel representation preserving the topology of the initial structure. This stage generates a model with respect to the printing conditions to ensure a stable and controlled voxel placement during the printing process. Y1 - 2017 U6 - https://doi.org/10.1088/2057-1976/aa7611 VL - 3 IS - 3 PB - IOP Publishing ER - TY - CHAP A1 - Arlt, Tobias A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Hilger, Andre A1 - Mahnke, Ingo A1 - Hege, Hans-Christian A1 - Lepper, Verena A1 - Siopi, Tzulia A1 - Mahnke, Heinz.Eberhard T1 - Virtual Access to Hidden Texts – Study of Ancient Papyri T2 - Eighth Joint BER II and BESSY II User Meeting, Dec 7-9, 2016, Berlin, Germany N2 - When physical unfolding/unrolling of papyri is not possible or too dangerous for preserving the precious object, tomographic approaches may be the ap- propriate alternative. Requirements are the resolution and the contrast to distinguish writing and substrate. The steps to be performed are the following: (1) Select the object of interest (archaeological arguments, cultural back- ground of the object, etc.). (2) Find the proper physical procedure, especially with respect to contrast, take the tomographic data, e.g. by absorption x-ray tomography. (3) Apply mathematical unfolding transformations to the tomographic data, in order to obtain a 2d-planar reconstruction of text. Y1 - 2016 ER - TY - CHAP A1 - Dean, Mason N. A1 - Seidel, R. A1 - Knötel, David A1 - Lyons, K. A1 - Baum, Daniel A1 - Weaver, James C. A1 - Fratzl, Peter T1 - To build a shark: 3D tiling laws of tessellated cartilage T2 - Abstract in Integrative and Comparative Biology; conference Society of Integrative and Comparative Biology annual meeting, January 3-7, 2016, Portland, USA N2 - The endoskeleton of sharks and rays (elasmobranchs) is comprised of a cartilaginous core, covered by thousands of mineralized tiles, called tesserae. Characterizing the relationship between tesseral morphometrics, skeletal growth and mechanics is challenging because tesserae are small (a few hundred micrometers wide), anchored to the surrounding tissue in complex three-dimensional ways, and occur in huge numbers. We integrate material property, histology, electron microscopy and synchrotron and laboratory µCT scans of skeletal elements from an ontogenetic series of round stingray Urobatis halleri, to gain insights into the generation and maintenance of a natural tessellated system. Using a custom-made semiautomatic segmentation algorithm, we present the first quantitative and 3d description of tesserae across whole skeletal elements. The tessellation is not interlocking or regular, with tesserae showing a great range of shapes, sizes and number of neighbors. This is partly region-dependent: for example, thick, columnar tesserae are arranged in series along convex edges with small radius of curvature (RoC), whereas more brick- or disc-shaped tesserae are found in planar/flatter areas. Comparison of the tessellation across ontogeny, shows that in younger animals, the forming tesseral network is less densely packed, appearing as a covering of separate, poorly mineralized islands that grow together with age to form a complete surface. Some gaps in the tessellation are localized to specific regions in all samples, indicating they are real features, perhaps either regions of delayed mineralization or of tendon insertion. We will use the structure of elasmobranch skeletons as a road map for understanding shark and ray skeletal mechanics, but also to extract fundamental engineering principles for tiled composite materials. Y1 - 2016 UR - https://academic.oup.com/icb/article-pdf/56/suppl_1/e1/9102603/icw002.pdf VL - 56 (suppl 1) ER - TY - JOUR A1 - Paetsch, Olaf A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Ehrig, Karsten A1 - Ebell, Gino A1 - Meinel, Dietmar A1 - Heyn, Andreas T1 - Korrosionsverfolgung in 3D-computertomographischen Aufnahmen von Stahlbetonproben JF - DGZfP-Jahrestagung 2014 Konferenzband Y1 - 2014 ER - TY - JOUR A1 - Knötel, David A1 - Seidel, Ronald A1 - Prohaska, Steffen A1 - Dean, Mason N. A1 - Baum, Daniel T1 - Automated Segmentation of Complex Patterns in Biological Tissues: Lessons from Stingray Tessellated Cartilage JF - PLOS ONE N2 - Introduction – Many biological structures show recurring tiling patterns on one structural level or the other. Current image acquisition techniques are able to resolve those tiling patterns to allow quantitative analyses. The resulting image data, however, may contain an enormous number of elements. This renders manual image analysis infeasible, in particular when statistical analysis is to be conducted, requiring a larger number of image data to be analyzed. As a consequence, the analysis process needs to be automated to a large degree. In this paper, we describe a multi-step image segmentation pipeline for the automated segmentation of the calcified cartilage into individual tesserae from computed tomography images of skeletal elements of stingrays. Methods – Besides applying state-of-the-art algorithms like anisotropic diffusion smoothing, local thresholding for foreground segmentation, distance map calculation, and hierarchical watershed, we exploit a graph-based representation for fast correction of the segmentation. In addition, we propose a new distance map that is computed only in the plane that locally best approximates the calcified cartilage. This distance map drastically improves the separation of individual tesserae. We apply our segmentation pipeline to hyomandibulae from three individuals of the round stingray (Urobatis halleri), varying both in age and size. Results – Each of the hyomandibula datasets contains approximately 3000 tesserae. To evaluate the quality of the automated segmentation, four expert users manually generated ground truth segmentations of small parts of one hyomandibula. These ground truth segmentations allowed us to compare the segmentation quality w.r.t. individual tesserae. Additionally, to investigate the segmentation quality of whole skeletal elements, landmarks were manually placed on all tesserae and their positions were then compared to the segmented tesserae. With the proposed segmentation pipeline, we sped up the processing of a single skeletal element from days or weeks to a few hours. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0188018 ER - TY - GEN A1 - Kramer, Tobias A1 - Noack, Matthias A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Heller, Eric J. T1 - Dust and gas emission from cometary nuclei: the case of comet 67P/Churyumov-Gerasimenko N2 - Comets display with decreasing solar distance an increased emission of gas and dust particles, leading to the formation of the coma and tail. Spacecraft missions provide insight in the temporal and spatial variations of the dust and gas sources located on the cometary nucleus. For the case of comet 67P/Churyumov-Gerasimenko (67P/C-G), the long-term obser- vations from the Rosetta mission point to a homogeneous dust emission across the entire illuminated surface. Despite the homogeneous initial dis- tribution, a collimation in jet-like structures becomes visible. We propose that this observation is linked directly to the complex shape of the nucleus and projects concave topographical features into the dust coma. To test this hypothesis, we put forward a gas-dust description of 67P/C-G, where gravitational and gas forces are accurately determined from the surface mesh and the rotation of the nucleus is fully incorporated. The emerging jet-like structures persist for a wide range of gas-dust interactions and show a dust velocity dependent bending. T3 - ZIB-Report - 17-78 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66338 SN - 1438-0064 ER - TY - GEN A1 - Knötel, David A1 - Seidel, Ronald A1 - Zaslansky, Paul A1 - Prohaska, Steffen A1 - Dean, Mason N. A1 - Baum, Daniel T1 - Automated Segmentation of Complex Patterns in Biological Tissues: Lessons from Stingray Tessellated Cartilage (Supplementary Material) N2 - Supplementary data to reproduce and understand key results from the related publication, including original image data and processed data. In particular, sections from hyomandibulae harvested from specimens of round stingray Urobatis halleri, donated from another study (DOI: 10.1002/etc.2564). Specimens were from sub-adults/adults collected by beach seine from collection sites in San Diego and Seal Beach, California, USA. The hyomandibulae were mounted in clay, sealed in ethanol-humidified plastic tubes and scanned with a Skyscan 1172 desktop μCT scanner (Bruker μCT, Kontich, Belgium) in association with another study (DOI: 10.1111/joa.12508). Scans for all samples were performed with voxel sizes of 4.89 μm at 59 kV source voltage and 167 μA source current, over 360◦ sample 120 rotation. For our segmentations, the datasets were resampled to a voxel size of 9.78 μm to reduce the size of the images and speed up processing. In addition, the processed data that was generated with the visualization software Amira with techniques described in the related publication based on the mentioned specimens. Y1 - 2017 U6 - https://doi.org/10.12752/4.DKN.1.0 N1 - Supplementary data to reproduce and understand key results from the related publication, including original image data and processed data. ER - TY - JOUR A1 - Kramer, Tobias A1 - Noack, Matthias A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Heller, Eric J. T1 - Dust and gas emission from cometary nuclei: the case of comet 67P/Churyumov-Gerasimenko JF - Advances in Physics: X N2 - Comets display with decreasing solar distance an increased emission of gas and dust particles, leading to the formation of the coma and tail. Spacecraft missions provide insight in the temporal and spatial variations of the dust and gas sources located on the cometary nucleus. For the case of comet 67P/Churyumov-Gerasimenko (67P/C-G), the long-term obser- vations from the Rosetta mission point to a homogeneous dust emission across the entire illuminated surface. Despite the homogeneous initial dis- tribution, a collimation in jet-like structures becomes visible. We propose that this observation is linked directly to the complex shape of the nucleus and projects concave topographical features into the dust coma. To test this hypothesis, we put forward a gas-dust description of 67P/C-G, where gravitational and gas forces are accurately determined from the surface mesh and the rotation of the nucleus is fully incorporated. The emerging jet-like structures persist for a wide range of gas-dust interactions and show a dust velocity dependent bending. Y1 - 2018 U6 - https://doi.org/10.1080/23746149.2017.1404436 VL - 3 IS - 1 SP - 1404436 ER - TY - JOUR A1 - Baum, Daniel A1 - Lindow, Norbert A1 - Hege, Hans-Christian A1 - Lepper, Verena A1 - Siopi, Tzulia A1 - Kutz, Frank A1 - Mahlow, Kristin A1 - Mahnke, Heinz-Eberhard T1 - Revealing hidden text in rolled and folded papyri JF - Applied Physics A N2 - Ancient Egyptian papyri are often folded, rolled up or kept as small packages, sometimes even sealed. Physically unrolling or unfolding these packages might severely damage them. We demonstrate a way to get access to the hidden script without physical unfolding by employing computed tomography and mathematical algorithms for virtual unrolling and unfolding. Our algorithmic approaches are combined with manual interaction. This provides the necessary flexibility to enable the unfolding of even complicated and partly damaged papyrus packages. In addition, it allows us to cope with challenges posed by the structure of ancient papyrus, which is rather irregular, compared to other writing substrates like metallic foils or parchment. Unfolding of packages is done in two stages. In the first stage, we virtually invert the physical folding process step by step until the partially unfolded package is topologically equivalent to a scroll or a papyrus sheet folded only along one fold line. To minimize distortions at this stage, we apply the method of moving least squares. In the second stage, the papyrus is simply flattened, which requires the definition of a medial surface. We have applied our software framework to several papyri. In this work, we present the results of applying our approaches to mockup papyri that were either rolled or folded along perpendicular fold lines. In the case of the folded papyrus, our approach represents the first attempt to address the unfolding of such complicated folds. Y1 - 2017 U6 - https://doi.org/10.1007/s00339-017-0808-6 VL - 123 IS - 3 SP - 171 ER - TY - JOUR A1 - Kozlíková, Barbora A1 - Krone, Michael A1 - Falk, Martin A1 - Lindow, Norbert A1 - Baaden, Marc A1 - Baum, Daniel A1 - Viola, Ivan A1 - Parulek, Julius A1 - Hege, Hans-Christian T1 - Visualization of Biomolecular Structures: State of the Art Revisited JF - Computer Graphics Forum N2 - Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets. Y1 - 2016 U6 - https://doi.org/10.1111/cgf.13072 VL - 36 IS - 8 SP - 178 EP - 204 ER - TY - JOUR A1 - Kramer, Tobias A1 - Noack, Matthias A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Heller, Eric J. T1 - Homogeneous dust emission and jet structure near active cometary nuclei: the case of 67P/Churyumov-Gerasimenko N2 - We compute trajectories of dust grains starting from a homogeneous surface activity-profile on a irregularly shaped cometary nucleus. Despite the initially homogeneous dust distribution a collimation in jet-like structures becomes visible. The fine structure is caused by concave topographical features with similar bundles of normal vectors. The model incorporates accurately determined gravitational forces, rotation of the nucleus, and gas-dust interaction. Jet-like dust structures are obtained for a wide range of gas-dust interactions. For the comet 67P/Churyumov-Gerasimenko, we derive the global dust distribution around the nucleus and find several areas of agreement between the homogeneous dust emission model and the Rosetta observation of dust jets, including velocity-dependent bending of trajectories. Y1 - 2015 ER - TY - GEN A1 - Baum, Daniel A1 - Titschack, Jürgen T1 - Cavity and Pore Segmentation in 3D Images with Ambient Occlusion N2 - Many natural objects contain pores and cavities that are filled with the same material that also surrounds the object. When such objects are imaged using, for example, computed tomography, the pores and cavities cannot be distinguished from the surrounding material by considering gray values and texture properties of the image. In this case, morphological operations are often used to fill the inner region. This is efficient, if the pore and cavity structures are small compared to the overall size of the object and if the object’s shape is mainly convex. If this is not the case, the segmentation might be very difficult and may result in a lot of noise. We propose the usage of ambient occlusion for the segmentation of pores and cavities. One nice property of ambient occlusion is that it generates smooth scalar fields. Due to this smoothness property, a segmentation based on those fields will result in smooth boundaries at the pore and cavity openings. This is often desired, particularly when dealing with natural objects. T3 - ZIB-Report - 16-17 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59151 SN - 1438-0064 ER - TY - JOUR A1 - Titschack, Jürgen A1 - Fink, Hiske G. A1 - Baum, Daniel A1 - Wienberg, Claudia A1 - Hebbeln, Dierk A1 - Freiwald, André T1 - Mediterranean cold-water corals - an important regional carbonate factory? JF - The Depositional Record Y1 - 2016 U6 - https://doi.org/10.1002/dep2.14 VL - 2 IS - 1 SP - 74 EP - 96 ER - TY - CHAP A1 - Baum, Daniel A1 - Titschack, Jürgen T1 - Cavity and Pore Segmentation in 3D Images with Ambient Occlusion T2 - EuroVis 2016 - Short Papers Y1 - 2016 U6 - https://doi.org/10.2312/eurovisshort.20161171 PB - The Eurographics Association ER - TY - JOUR A1 - Krone, Michael A1 - Kozlíková, Barbora A1 - Lindow, Norbert A1 - Baaden, Marc A1 - Baum, Daniel A1 - Parulek, Julius A1 - Hege, Hans-Christian A1 - Viola, Ivan T1 - Visual Analysis of Biomolecular Cavities: State of the Art JF - Computer Graphics Forum N2 - In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification for cavity detection approaches and structure them into four distinct classes: grid-based, Voronoi-based, surface-based, and probe-based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding visualization technologies starting with direct 3D visualization, followed with non-spatial visualization techniques that for example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an outlook on future challenges in the field. Y1 - 2016 U6 - https://doi.org/10.1111/cgf.12928 SN - 1467-8659 VL - 35 IS - 3 SP - 527 EP - 551 ER - TY - CHAP A1 - Kozlikova, Barbora A1 - Krone, Michael A1 - Lindow, Norbert A1 - Falk, Martin A1 - Baaden, Marc A1 - Baum, Daniel A1 - Viola, Ivan A1 - Parulek, Julius A1 - Hege, Hans-Christian T1 - Visualization of Biomolecular Structures: State of the Art T2 - EuroVis 2015 STARS Proceedings N2 - Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The report concludes with an outlook on promising and important research topics to enable further success in advancing the knowledge about interaction of molecular structures. Y1 - 2015 U6 - https://doi.org/10.2312/eurovisstar.20151112 SP - 61 EP - 81 ER - TY - JOUR A1 - Hoch, Hannelore A1 - Wessel, Andreas A1 - Asche, Manfred A1 - Baum, Daniel A1 - Beckmann, Felix A1 - Bräunig, Peter A1 - Ehrig, Karsten A1 - Mühlethaler, Roland A1 - Riesemeier, Heinrich A1 - Staude, Andreas A1 - Stelbrink, Björn A1 - Wachmann, Ekkehard A1 - Weintraub, Phyllis A1 - Wipfler, Benjamin A1 - Wolff, Carsten A1 - Zilch, Mathias T1 - Non-Sexual Abdominal Appendages in Adult Insects Challenge a 300 Million Year Old Bauplan JF - Current Biology Y1 - 2014 U6 - https://doi.org/10.1016/j.cub.2013.11.040 VL - 24 IS - 1 SP - R16 EP - R17 ER - TY - CHAP A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Prohaska, Steffen ED - Mücklich, Frank ED - Slussallek, Philipp ED - Schladitz, Katja T1 - Describing and Analyzing the Dual Structures of Porous Media T2 - Proc. 3D-Microstructure Meeting Y1 - 2011 SP - 24 EP - 25 ER - TY - CHAP A1 - Weber, Britta A1 - Möller, Marit A1 - Verbavatz, Jean-Marc A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Prohaska, Steffen T1 - Fast Tracing of Microtubule Centerlines in Electron Tomograms T2 - BioVis 2011 Abstracts, 1st IEEE Symposium on Biological Data Visualization Y1 - 2011 ER - TY - JOUR A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - Perceptually Linear Parameter Variations JF - Computer Graphics Forum Y1 - 2012 U6 - https://doi.org/10.1111/j.1467-8659.2012.03054.x target VL - 31 IS - 2 SP - 535 EP - 544 ER - TY - JOUR A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - Interactive Rendering of Materials and Biological Structures on Atomic and Nanoscopic Scale JF - Computer Graphics Forum Y1 - 2012 U6 - https://doi.org/10.1111/j.1467-8659.2012.03128.x target VL - 31 IS - 3 SP - 1325 EP - 1334 ER - TY - CHAP A1 - Paetsch, Olaf A1 - Baum, Daniel A1 - Ehrig, Karsten A1 - Meinel, Dietmar A1 - Prohaska, Steffen T1 - Vergleich automatischer 3D-Risserkennungsmethoden für die quantitative Analyse der Schadensentwicklung in Betonproben mit Computer-Tomographie T2 - Tagungsband der DACH Jahrestagung 2012 Y1 - 2012 ER - TY - CHAP A1 - Paetsch, Olaf A1 - Baum, Daniel A1 - Breßler, David A1 - Ehrig, Karsten A1 - Meinel, Dietmar A1 - Prohaska, Steffen T1 - 3-D-Visualisierung und statistische Analyse von Rissen in mit Computer-Tomographie untersuchten Betonproben T2 - Tagungsband der DGZfP Jahrestagung 2013 Y1 - 2013 ER - TY - CHAP A1 - Paetsch, Olaf A1 - Baum, Daniel A1 - Ehrig, Karsten A1 - Meinel, Dietmar A1 - Prohaska, Steffen T1 - Automated 3D Crack Detection for Analyzing Damage Processes in Concrete with Computed Tomography T2 - Proceedings of Conference on Industrial Computed Tomography Y1 - 2012 SP - 321 EP - 330 ER - TY - CHAP A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - A Point-matching based algorithm for 3D surface alignment of drug-sized molecules T2 - Computational Life Sciences II, Second International Symposium, CompLife 2006, Cambridge (UK), Sept. 2006 Y1 - 2006 U6 - https://doi.org/10.1007/11875741_18 VL - 4216 SP - 183 EP - 193 PB - Springer ER - TY - CHAP A1 - Baum, Daniel T1 - Multiple semi-flexible 3D superposition of drug-sized molecules T2 - Computational Life Sciences: First International Symposium, CompLife 2005 Y1 - 2005 U6 - https://doi.org/10.1007/11560500_18 VL - 3695 SP - 198 EP - 207 PB - Springer CY - Konstanz, Germany ER - TY - JOUR A1 - Weber, Britta A1 - Tranfield, Erin M. A1 - Höög, Johanna L. A1 - Baum, Daniel A1 - Antony, Claude A1 - Hyman, Tony A1 - Verbavatz, Jean-Marc A1 - Prohaska, Steffen T1 - Automated stitching of microtubule centerlines across serial electron tomograms JF - PLoS ONE Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0113222 SP - e113222 ER - TY - JOUR A1 - Matsuyama, Kei A1 - Titschack, Jürgen A1 - Baum, Daniel A1 - Freiwald, André T1 - Two new species of erect Bryozoa (Gymnolaemata: Cheilostomata) and the application of non-destructive imaging methods for quantitative taxonomy JF - Zootaxa N2 - Two new species of cheilostome Bryozoa are described from continental-slope habitats off Mauritania, including canyon and coldwater-coral (mound) habitats. Internal structures of both species were visualised and quantified using micro-computed tomographic (micro-CT) methods. Cellaria bafouri n. sp. is characterised by the arrangement of zooids in alternating longitudinal rows, a smooth cryptocyst, and the presence of an ooecial plate with denticles. Smittina imragueni n. sp. exhibits many similarities with Smittina cervicornis (Pallas, 1766), but differs especially in the shape and orientation of the suboral avicularium. Observations on Smittina imragueni and material labelled as Smittina cervicornis suggest that the latter represents a species group, members of which have not yet been discriminated, possibly because of high intracolony variation and marked astogenetic changes in surface morphology. Both new species are known only from the habitats where they were collected, probably reflecting the paucity of bryozoan sampling from this geographic area and depth range. Both species are able to tolerate low oxygen concentration, which is assumed to be compensated by the high nutrient supply off Mauritania. The application of micro-CT for the semiautomatic quantification of zooidal skeletal characters was successfully tested. We were able to automatically distinguish individual zooidal cavities and acquire corresponding morphological datasets. Comparing the obtained results with conventional SEM measurements allowed ascertaining the reliability of this new method. The employment of micro-CT allows the observation and quantification of previously un- seen characters that can be used in describing and differentiating species that were previously indistinguishable. Further- more, this method might help elucidate processes of colony growth and the function of individual zooids during this process. Y1 - 2015 U6 - https://doi.org/10.11646/zootaxa.4020.1.3 VL - 4020 IS - 1 SP - 81 EP - 100 ER - TY - GEN A1 - Baum, Daniel T1 - An Evaluation of Color Maps for Visual Data Exploration T3 - ZIB-Report - 19-42 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74259 SN - 1438-0064 ER - TY - JOUR A1 - Baum, Daniel A1 - Weaver, James C. A1 - Zlotnikov, Igor A1 - Knötel, David A1 - Tomholt, Lara A1 - Dean, Mason N. T1 - High-Throughput Segmentation of Tiled Biological Structures using Random-Walk Distance Transforms JF - Integrative And Comparative Biology N2 - Various 3D imaging techniques are routinely used to examine biological materials, the results of which are usually a stack of grayscale images. In order to quantify structural aspects of the biological materials, however, they must first be extracted from the dataset in a process called segmentation. If the individual structures to be extracted are in contact or very close to each other, distance-based segmentation methods utilizing the Euclidean distance transform are commonly employed. Major disadvantages of the Euclidean distance transform, however, are its susceptibility to noise (very common in biological data), which often leads to incorrect segmentations (i.e. poor separation of objects of interest), and its limitation of being only effective for roundish objects. In the present work, we propose an alternative distance transform method, the random-walk distance transform, and demonstrate its effectiveness in high-throughput segmentation of three microCT datasets of biological tilings (i.e. structures composed of a large number of similar repeating units). In contrast to the Euclidean distance transform, this random-walk approach represents the global, rather than the local, geometric character of the objects to be segmented and, thus, is less susceptible to noise. In addition, it is directly applicable to structures with anisotropic shape characteristics. Using three case studies—stingray tessellated cartilage, starfish dermal endoskeleton, and the prismatic layer of bivalve mollusc shell—we provide a typical workflow for the segmentation of tiled structures, describe core image processing concepts that are underused in biological research, and show that for each study system, large amounts of biologically-relevant data can be rapidly segmented, visualized and analyzed. Y1 - 2019 U6 - https://doi.org/10.1093/icb/icz117 ER - TY - CHAP A1 - Baum, Daniel ED - Bock von Wülfingen, Bettina T1 - An Evaluation of Color Maps for Visual Data Exploration T2 - Science in Color: Visualizing Achromatic Knowledge Y1 - 2019 SP - 147 EP - 161 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Scholtz, Gerhard A1 - Knötel, David A1 - Baum, Daniel T1 - D’Arcy W. Thompson’s Cartesian transformations: a critical evaluation JF - Zoomorphology N2 - The images of D’Arcy Wentworth Thompson’s book “On Growth and Form” got an iconic status and became influential for biometrics and other mathematical approaches to organismic form. In particular, this is true for those of the chapter on the theory of transformation, which even has an impact on art and humanities. Based on his approach, Thompson formulated far-reaching conclusions with a partly anti-Darwinian stance. Here, we use the example of Thompson’s transformation of crab carapaces to test to what degree the transformation of grids, landmarks, and shapes result in congruent images. For comparison, we applied the same series of tests to digitized carapaces of real crabs. Both approaches show similar results. Only the simple transformations show a reasonable form of congruence. In particular, the transformations to majoid spider crabs reveal a complicated transformation of grids with partly crossing lines. By contrast, the carapace of the lithodid species is relatively easily created despite the fact that it is no brachyuran, but evolved a spider crab-like shape convergently from a hermit crab ancestor. Y1 - 2020 U6 - https://doi.org/10.1007/s00435-020-00494-1 VL - 139 SP - 293 EP - 308 ER - TY - JOUR A1 - Schotte, Merlind A1 - Chaumel, Júlia A1 - Dean, Mason N. A1 - Baum, Daniel T1 - Image analysis pipeline for segmentation of a biological porosity network, the lacuno-canalicular system in stingray tesserae JF - MethodsX N2 - A prerequisite for many analysis tasks in modern comparative biology is the segmentation of 3-dimensional (3D) images of the specimens being investigated (e.g. from microCT data). Depending on the specific imaging technique that was used to acquire the images and on the image resolution, different segmentation tools will be required. While some standard tools exist that can often be applied for specific subtasks, building whole processing pipelines solely from standard tools is often difficult. Some tasks may even necessitate the implementation of manual interaction tools to achieve a quality that is sufficient for the subsequent analysis. In this work, we present a pipeline of segmentation tools that can be used for the semi-automatic segmentation and quantitative analysis of voids in tissue (i.e. internal structural porosity). We use this pipeline to analyze lacuno-canalicular networks in stingray tesserae from 3D images acquired with synchrotron microCT. * The first step of this processing pipeline, the segmentation of the tesserae, was performed using standard marker-based watershed segmentation. The efficient processing of the next two steps, that is, the segmentation of all lacunae spaces belonging to a specific tessera and the separation of these spaces into individual lacunae required modern, recently developed tools. * For proofreading, we developed a graph-based interactive method that allowed us to quickly split lacunae that were accidentally merged, and to merge lacunae that were wrongly split. * Finally, the tesserae and their corresponding lacunae were subdivided into anatomical regions of interest (structural wedges) using a semi- manual approach. Y1 - 2020 U6 - https://doi.org/10.1016/j.mex.2020.100905 VL - 7 SP - 100905 ER - TY - GEN A1 - Schotte, Merlind A1 - Chaumel, Júlia A1 - Dean, Mason N. A1 - Baum, Daniel T1 - Image analysis pipeline for segmentation of a biological porosity network, the lacuno-canalicular system in stingray tesserae N2 - A prerequisite for many analysis tasks in modern comparative biology is the segmentation of 3-dimensional (3D) images of the specimens being investigated (e.g. from microCT data). Depending on the specific imaging technique that was used to acquire the images and on the image resolution, different segmentation tools will be required. While some standard tools exist that can often be applied for specific subtasks, building whole processing pipelines solely from standard tools is often difficult. Some tasks may even necessitate the implementation of manual interaction tools to achieve a quality that is sufficient for the subsequent analysis. In this work, we present a pipeline of segmentation tools that can be used for the semi-automatic segmentation and quantitative analysis of voids in tissue (i.e. internal structural porosity). We use this pipeline to analyze lacuno-canalicular networks in stingray tesserae from 3D images acquired with synchrotron microCT. * The first step of this processing pipeline, the segmentation of the tesserae, was performed using standard marker-based watershed segmentation. The efficient processing of the next two steps, that is, the segmentation of all lacunae spaces belonging to a specific tessera and the separation of these spaces into individual lacunae required modern, recently developed tools. * For proofreading, we developed a graph-based interactive method that allowed us to quickly split lacunae that were accidentally merged, and to merge lacunae that were wrongly split. * Finally, the tesserae and their corresponding lacunae were subdivided into anatomical regions of interest (structural wedges) using a semi- manual approach. T3 - ZIB-Report - 20-12 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78237 SN - 1438-0064 ER - TY - JOUR A1 - Willsch, Maraike A1 - Friedrich, Frank A1 - Baum, Daniel A1 - Jurisch, Ivo A1 - Ohl, Michael T1 - A comparative description of the mesosomal musculature in Sphecidae and Ampulicidae (Hymenoptera, Apoidea) using 3D techniques JF - Deutsche Entomologische Zeitschrift N2 - Conflicting hypotheses about the relationships among the major lineages of aculeate Hymenoptera clearly show the necessity of detailed comparative morphological studies. Using micro-computed tomography and 3D reconstructions, the skeletal musculature of the meso- and metathorax and the first and second abdominal segment in Apoidea are described. Females of Sceliphron destillatorium, Sphex (Fernaldina) lucae (both Sphecidae), and Ampulex compressa (Ampulicidae) were examined. The morphological terminology provided by the Hymenoptera Anatomy Ontology is used. Up to 42 muscles were found. The three species differ in certain numerical and structural aspects. Ampulicidae differs significantly from Sphecidae in the metathorax and the anterior abdomen. The metapleural apodeme and paracoxal ridge are weakly developed in Ampulicidae, which affect some muscular structures. Furthermore, the muscles that insert on the coxae and trochanters are broader and longer in Ampulicidae. A conspicuous characteristic of Sphecidae is the absence of the metaphragma. Overall, we identified four hitherto unrecognized muscles. Our work suggests additional investigations on structures discussed in this paper. Y1 - 2020 U6 - https://doi.org/10.3897/dez.67.49493 VL - 67 IS - 1 SP - 51 EP - 67 ER - TY - GEN A1 - Ege, Yannic A1 - Foth, Christian A1 - Baum, Daniel A1 - Wirkner, Christian S. A1 - Richter, Stefan T1 - Making spherical-harmonics-based Geometric Morphometrics (SPHARM) approachable for 3D images containing large cavity openings using Ambient Occlusion - a study using hermit crab claw shape variability N2 - An advantageous property of mesh-based geometric morphometrics (GM) towards landmark-based approaches, is the possibility of precisely examining highly irregular shapes and highly topographic surfaces. In case of spherical-harmonics-based GM the main requirement is a completely closed mesh surface, which often is not given, especially when dealing with natural objects. Here we present a methodological workflow to prepare 3D segmentations containing large cavity openings for the conduction of spherical-harmonics-based GM. This will be exemplified with a case study on claws of hermit crabs (Paguroidea, Decapoda, Crustacea), whereby joint openings – between manus and “movable finger” – typify the large-cavity-opening problem. We found a methodology including an ambient-occlusion-based segmentation algorithm leading to results precise and suitable to study the inter- and intraspecific differences in shape of hermit crab claws. Statistical analyses showed a significant separation between all examined diogenid and pagurid claws, whereas the separation between all left and right claws did not show significance. Additionally, the procedure offers other benefits. It is easy to reproduce and creates sparse variance in the data, closures integrate smoothly into the total structures and the algorithm saves a significant amount of time. T3 - ZIB-Report - 20-09 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-77744 SN - 1438-0064 ER - TY - JOUR A1 - Ege, Yannic A1 - Foth, Christian A1 - Baum, Daniel A1 - Wirkner, Christian S. A1 - Richter, Stefan T1 - Making spherical-harmonics-based Geometric Morphometrics (SPHARM) approachable for 3D images containing large cavity openings using Ambient Occlusion - a study using hermit crab claw shape variability JF - Zoomorphology N2 - An advantageous property of mesh-based geometric morphometrics (GM) towards landmark-based approaches, is the possibility of precisely examining highly irregular shapes and highly topographic surfaces. In case of spherical-harmonics-based GM the main requirement is a completely closed mesh surface, which often is not given, especially when dealing with natural objects. Here we present a methodological workflow to prepare 3D segmentations containing large cavity openings for the conduction of spherical-harmonics-based GM. This will be exemplified with a case study on claws of hermit crabs (Paguroidea, Decapoda, Crustacea), whereby joint openings – between manus and “movable finger” – typify the large-cavity-opening problem. We found a methodology including an ambient-occlusion-based segmentation algorithm leading to results precise and suitable to study the inter- and intraspecific differences in shape of hermit crab claws. Statistical analyses showed a significant separation between all examined diogenid and pagurid claws, whereas the separation between all left and right claws did not show significance. Additionally, the procedure offers other benefits. It is easy to reproduce and creates sparse variance in the data, closures integrate smoothly into the total structures and the algorithm saves a significant amount of time. Y1 - 2020 U6 - https://doi.org/10.1007/s00435-020-00488-z VL - 139 SP - 421 EP - 432 ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon J. A1 - Ulbricht, Alexander A1 - Heinrich, Philipp A1 - Baum, Daniel A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-situ defect detection in laser powder bed fusion by using thermography and optical tomography – comparison to computed tomography JF - Metals Y1 - 2020 U6 - https://doi.org/10.3390/met10010103 VL - 10 IS - 1 SP - 103 ER - TY - JOUR A1 - Chaumel, Júlia A1 - Schotte, Merlind A1 - Bizzarro, Joseph J. A1 - Zaslansky, Paul A1 - Fratzl, Peter A1 - Baum, Daniel A1 - Dean, Mason N. T1 - Co-aligned chondrocytes: Zonal morphological variation and structured arrangement of cell lacunae in tessellated cartilage JF - Bone N2 - In most vertebrates the embryonic cartilaginous skeleton is replaced by bone during development. During this process, cartilage cells (chondrocytes) mineralize the extracellular matrix and undergo apoptosis, giving way to bone cells (osteocytes). In contrast, sharks and rays (elasmobranchs) have cartilaginous skeletons throughout life, where only the surface mineralizes, forming a layer of tiles (tesserae). Elasmobranch chondrocytes, unlike those of other vertebrates, survive cartilage mineralization and are maintained alive in spaces (lacunae) within tesserae. However, the function(s) of the chondrocytes in the mineralized tissue remain unknown. Applying a custom analysis workflow to high-resolution synchrotron microCT scans of tesserae, we characterize the morphologies and arrangements of stingray chondrocyte lacunae, using lacunar morphology as a proxy for chondrocyte morphology. We show that the cell density is comparable in unmineralized and mineralized tissue from our study species and that cells maintain the similar volume even when they have been incorporated into tesserae. This discovery supports previous hypotheses that elasmobranch chondrocytes, unlike those of other taxa, do not proliferate, hypertrophy or undergo apoptosis during mineralization. Tessera lacunae show zonal variation in their shapes—being flatter further from and more spherical closer to the unmineralized cartilage matrix and larger in the center of tesserae— and show pronounced organization into parallel layers and strong orientation toward neighboring tesserae. Tesserae also exhibit local variation in lacunar density, with the density considerably higher near pores passing through the tesseral layer, suggesting pores and cells interact (e.g. that pores contain a nutrient source). We hypothesize that the different lacunar types reflect the stages of the tesserae formation process, while also representing local variation in tissue architecture and cell function. Lacunae are linked by small passages (canaliculi) in the matrix to form elongate series at the tesseral periphery and tight clusters in the center of tesserae, creating a rich connectivity among cells. The network arrangement and the shape variation of chondrocytes in tesserae indicate that cells may interact within and between tesserae and manage mineralization differently from chondrocytes in other vertebrates, perhaps performing analogous roles to osteocytes in bone. Y1 - 2020 U6 - https://doi.org/10.1016/j.bone.2020.115264 VL - 134 SP - 115264 ER - TY - GEN A1 - Chaumel, Júlia A1 - Schotte, Merlind A1 - Bizzarro, Joseph J. A1 - Zaslansky, Paul A1 - Fratzl, Peter A1 - Baum, Daniel A1 - Dean, Mason N. T1 - Co-aligned chondrocytes: Zonal morphological variation and structured arrangement of cell lacunae in tessellated cartilage N2 - In most vertebrates the embryonic cartilaginous skeleton is replaced by bone during development. During this process, cartilage cells (chondrocytes) mineralize the extracellular matrix and undergo apoptosis, giving way to bone cells (osteocytes). In contrast, sharks and rays (elasmobranchs) have cartilaginous skeletons throughout life, where only the surface mineralizes, forming a layer of tiles (tesserae). Elasmobranch chondrocytes, unlike those of other vertebrates, survive cartilage mineralization and are maintained alive in spaces (lacunae) within tesserae. However, the function(s) of the chondrocytes in the mineralized tissue remain unknown. Applying a custom analysis workflow to high-resolution synchrotron microCT scans of tesserae, we characterize the morphologies and arrangements of stingray chondrocyte lacunae, using lacunar morphology as a proxy for chondrocyte morphology. We show that the cell density is comparable in unmineralized and mineralized tissue from our study species and that cells maintain the similar volume even when they have been incorporated into tesserae. This discovery supports previous hypotheses that elasmobranch chondrocytes, unlike those of other taxa, do not proliferate, hypertrophy or undergo apoptosis during mineralization. Tessera lacunae show zonal variation in their shapes—being flatter further from and more spherical closer to the unmineralized cartilage matrix and larger in the center of tesserae— and show pronounced organization into parallel layers and strong orientation toward neighboring tesserae. Tesserae also exhibit local variation in lacunar density, with the density considerably higher near pores passing through the tesseral layer, suggesting pores and cells interact (e.g. that pores contain a nutrient source). We hypothesize that the different lacunar types reflect the stages of the tesserae formation process, while also representing local variation in tissue architecture and cell function. Lacunae are linked by small passages (canaliculi) in the matrix to form elongate series at the tesseral periphery and tight clusters in the center of tesserae, creating a rich connectivity among cells. The network arrangement and the shape variation of chondrocytes in tesserae indicate that cells may interact within and between tesserae and manage mineralization differently from chondrocytes in other vertebrates, perhaps performing analogous roles to osteocytes in bone. T3 - ZIB-Report - 20-04 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-77087 SN - 1438-0064 ER - TY - JOUR A1 - Soares, Ana Prates A1 - Baum, Daniel A1 - Hesse, Bernhard A1 - Kupsch, Andreas A1 - Müller, Bernd A1 - Zaslansky, Paul T1 - Scattering and phase-contrast X-ray methods reveal damage to glass fibers in endodontic posts following dental bur trimming JF - Dental Materials Y1 - 2020 U6 - https://doi.org/10.1016/j.dental.2020.10.018 VL - 37 IS - 2 SP - 201 EP - 211 ER - TY - JOUR A1 - Lindow, Norbert A1 - Brünig, Florian A1 - Dercksen, Vincent J. A1 - Fabig, Gunar A1 - Kiewisz, Robert A1 - Redemann, Stefanie A1 - Müller-Reichert, Thomas A1 - Prohaska, Steffen A1 - Baum, Daniel T1 - Semi-automatic stitching of filamentous structures in image stacks from serial-section electron tomography JF - bioRxiv N2 - We present a software-assisted workflow for the alignment and matching of filamentous structures across a 3D stack of serial images. This is achieved by combining automatic methods, visual validation, and interactive correction. After an initial alignment, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. Supported by a visual quality assessment of regions that have been already inspected, this allows a trade-off between quality and manual labor. The software tool was developed to investigate cell division by quantitative 3D analysis of microtubules (MTs) in both mitotic and meiotic spindles. For this, each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. In practice, automatic stitching alone provides only an incomplete solution, because large physical distortions and a low signal-to-noise ratio often cause experimental difficulties. To derive 3D models of spindles despite the problems related to sample preparation and subsequent data collection, semi-automatic validation and correction is required to remove stitching mistakes. However, due to the large number of MTs in spindles (up to 30k) and their resulting dense spatial arrangement, a naive inspection of each MT is too time consuming. Furthermore, an interactive visualization of the full image stack is hampered by the size of the data (up to 100 GB). Here, we present a specialized, interactive, semi-automatic solution that considers all requirements for large-scale stitching of filamentous structures in serial-section image stacks. The key to our solution is a careful design of the visualization and interaction tools for each processing step to guarantee real-time response, and an optimized workflow that efficiently guides the user through datasets. Y1 - 2020 U6 - https://doi.org/10.1101/2020.05.28.120899 ER - TY - JOUR A1 - Titschack, Jürgen A1 - Baum, Daniel A1 - Matsuyama, Kei A1 - Boos, Karin A1 - Färber, Claudia A1 - Kahl, Wolf-Achim A1 - Ehrig, Karsten A1 - Meinel, Dietmar A1 - Soriano, Carmen A1 - Stock, Stuart R. T1 - Ambient occlusion – a powerful algorithm to segment shell and skeletal intrapores in computed tomography data JF - Computers and Geosciences N2 - During the last decades, X-ray (micro-)computed tomography has gained increasing attention for the description of porous skeletal and shell structures of various organism groups. However, their quantitative analysis is often hampered by the difficulty to discriminate cavities and pores within the object from the surrounding region. Herein, we test the ambient occlusion (AO) algorithm and newly implemented optimisations for the segmentation of cavities (implemented in the software Amira). The segmentation accuracy is evaluated as a function of (i) changes in the ray length input variable, and (ii) the usage of AO (scalar) field and other AO-derived (scalar) fields. The results clearly indicate that the AO field itself outperforms all other AO-derived fields in terms of segmentation accuracy and robustness against variations in the ray length input variable. The newly implemented optimisations improved the AO field-based segmentation only slightly, while the segmentations based on the AO-derived fields improved considerably. Additionally, we evaluated the potential of the AO field and AO-derived fields for the separation and classification of cavities as well as skeletal structures by comparing them with commonly used distance-map-based segmentations. For this, we tested the zooid separation within a bryozoan colony, the stereom classification of an ophiuroid tooth, the separation of bioerosion traces within a marble block and the calice (central cavity)-pore separation within a dendrophyllid coral. The obtained results clearly indicate that the ideal input field depends on the three-dimensional morphology of the object of interest. The segmentations based on the AO-derived fields often provided cavity separations and skeleton classifications that were superior to or impossible to obtain with commonly used distance- map-based segmentations. The combined usage of various AO-derived fields by supervised or unsupervised segmentation algorithms might provide a promising target for future research to further improve the results for this kind of high-end data segmentation and classification. Furthermore, the application of the developed segmentation algorithm is not restricted to X-ray (micro-)computed tomographic data but may potentially be useful for the segmentation of 3D volume data from other sources. Y1 - 2018 U6 - https://doi.org/10.1016/j.cageo.2018.03.007 VL - 115 SP - 75 EP - 87 ER - TY - GEN A1 - Titschack, Jürgen A1 - Baum, Daniel A1 - Matsuyama, Kei A1 - Boos, Karin A1 - Färber, Claudia A1 - Kahl, Wolf-Achim A1 - Ehrig, Karsten A1 - Meinel, Dietmar A1 - Soriano, Carmen A1 - Stock, Stuart R. T1 - Ambient occlusion – a powerful algorithm to segment shell and skeletal intrapores in computed tomography data N2 - During the last decades, X-ray (micro-)computed tomography has gained increasing attention for the description of porous skeletal and shell structures of various organism groups. However, their quantitative analysis is often hampered by the difficulty to discriminate cavities and pores within the object from the surrounding region. Herein, we test the ambient occlusion (AO) algorithm and newly implemented optimisations for the segmentation of cavities (implemented in the software Amira). The segmentation accuracy is evaluated as a function of (i) changes in the ray length input variable, and (ii) the usage of AO (scalar) field and other AO-derived (scalar) fields. The results clearly indicate that the AO field itself outperforms all other AO-derived fields in terms of segmentation accuracy and robustness against variations in the ray length input variable. The newly implemented optimisations improved the AO field-based segmentation only slightly, while the segmentations based on the AO-derived fields improved considerably. Additionally, we evaluated the potential of the AO field and AO-derived fields for the separation and classification of cavities as well as skeletal structures by comparing them with commonly used distance-map-based segmentations. For this, we tested the zooid separation within a bryozoan colony, the stereom classification of an ophiuroid tooth, the separation of bioerosion traces within a marble block and the calice (central cavity)-pore separation within a dendrophyllid coral. The obtained results clearly indicate that the ideal input field depends on the three-dimensional morphology of the object of interest. The segmentations based on the AO-derived fields often provided cavity separations and skeleton classifications that were superior to or impossible to obtain with commonly used distance- map-based segmentations. The combined usage of various AO-derived fields by supervised or unsupervised segmentation algorithms might provide a promising target for future research to further improve the results for this kind of high-end data segmentation and classification. Furthermore, the application of the developed segmentation algorithm is not restricted to X-ray (micro-)computed tomographic data but may potentially be useful for the segmentation of 3D volume data from other sources. T3 - ZIB-Report - 18-14 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-67982 SN - 1438-0064 ER - TY - GEN A1 - Baum, Daniel A1 - Weaver, James C. A1 - Zlotnikov, Igor A1 - Knötel, David A1 - Tomholt, Lara A1 - Dean, Mason N. T1 - High-Throughput Segmentation of Tiled Biological Structures using Random-Walk Distance Transforms N2 - Various 3D imaging techniques are routinely used to examine biological materials, the results of which are usually a stack of grayscale images. In order to quantify structural aspects of the biological materials, however, they must first be extracted from the dataset in a process called segmentation. If the individual structures to be extracted are in contact or very close to each other, distance-based segmentation methods utilizing the Euclidean distance transform are commonly employed. Major disadvantages of the Euclidean distance transform, however, are its susceptibility to noise (very common in biological data), which often leads to incorrect segmentations (i.e. poor separation of objects of interest), and its limitation of being only effective for roundish objects. In the present work, we propose an alternative distance transform method, the random-walk distance transform, and demonstrate its effectiveness in high-throughput segmentation of three microCT datasets of biological tilings (i.e. structures composed of a large number of similar repeating units). In contrast to the Euclidean distance transform, this random-walk approach represents the global, rather than the local, geometric character of the objects to be segmented and, thus, is less susceptible to noise. In addition, it is directly applicable to structures with anisotropic shape characteristics. Using three case studies—stingray tessellated cartilage, starfish dermal endoskeleton, and the prismatic layer of bivalve mollusc shell—we provide a typical workflow for the segmentation of tiled structures, describe core image processing concepts that are underused in biological research, and show that for each study system, large amounts of biologically-relevant data can be rapidly segmented, visualized and analyzed. T3 - ZIB-Report - 19-33 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73841 SN - 1438-0064 ER - TY - GEN A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - Atomic Accessibility Radii for Molecular Dynamics Analysis N2 - In molecular structure analysis and visualization, the molecule’s atoms are often modeled as hard spheres parametrized by their positions and radii. While the atom positions result from experiments or molecular simulations, for the radii typically values are taken from literature. Most often, van der Waals (vdW) radii are used, for which diverse values exist. As a consequence, different visualization and analysis tools use different atomic radii, and the analyses are less objective than often believed. Furthermore, for the geometric accessibility analysis of molecular structures, vdW radii are not well suited. The reason is that during the molecular dynamics simulation, depending on the force field and the kinetic energy in the system, non-bonded atoms can come so close to each other that their vdW spheres intersect. In this paper, we introduce a new kind of atomic radius, called atomic accessibility radius’, that better characterizes the accessibility of an atom in a given molecular trajectory. The new radii reflect the movement possibilities of atoms in the simulated physical system. They are computed by solving a linear program that maximizes the radii of the atoms under the constraint that non-bonded spheres do not intersect in the considered molecular trajectory. Using this data-driven approach, the actual accessibility of atoms can be visualized more precisely. T3 - ZIB-Report - 18-18 KW - molecular dynamics KW - atomic radii KW - cavity analysis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-68468 SN - 1438-0064 ER - TY - CHAP A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - Atomic Accessibility Radii for Molecular Dynamics Analysis T2 - Workshop on Molecular Graphics and Visual Analysis of Molecular Data N2 - In molecular structure analysis and visualization, the molecule’s atoms are often modeled as hard spheres parametrized by their positions and radii. While the atom positions result from experiments or molecular simulations, for the radii typically values are taken from literature. Most often, van der Waals (vdW) radii are used, for which diverse values exist. As a consequence, different visualization and analysis tools use different atomic radii, and the analyses are less objective than often believed. Furthermore, for the geometric accessibility analysis of molecular structures, vdW radii are not well suited. The reason is that during the molecular dynamics simulation, depending on the force field and the kinetic energy in the system, non-bonded atoms can come so close to each other that their vdW spheres intersect. In this paper, we introduce a new kind of atomic radius, called atomic accessibility radius’, that better characterizes the accessibility of an atom in a given molecular trajectory. The new radii reflect the movement possibilities of atoms in the simulated physical system. They are computed by solving a linear program that maximizes the radii of the atoms under the constraint that non-bonded spheres do not intersect in the considered molecular trajectory. Using this data-driven approach, the actual accessibility of atoms can be visualized more precisely. Y1 - 2018 SN - 978-3-03868-061-1 U6 - https://doi.org/10.2312/molva.20181101 PB - The Eurographics Association ER - TY - GEN A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Leborgne, Morgan A1 - Hege, Hans-Christian T1 - Interactive Visualization of RNA and DNA Structures N2 - The analysis and visualization of nucleic acids (RNA and DNA) play an increasingly important role due to the growing number of known 3-dimensional structures of such molecules. The great complexity of these structures, in particular, those of RNA, demands interactive visualization to get deeper insights into the relationship between the 2D secondary structure motifs and their 3D tertiary structures. Over the last decades, a lot of research in molecular visualization has focused on the visual exploration of protein structures while nucleic acids have only been marginally addressed. In contrast to proteins, which are composed of amino acids, the ingredients of nucleic acids are nucleotides. They form structuring patterns that differ from those of proteins and, hence, also require different visualization and exploration techniques. In order to support interactive exploration of nucleic acids, the computation of secondary structure motifs as well as their visualization in 2D and 3D must be fast. Therefore, in this paper, we focus on the performance of both the computation and visualization of nucleic acid structure. For the first time, we present a ray casting-based visualization of RNA and DNA secondary and tertiary structures, which enables real-time visualization of even large molecular dynamics trajectories. Furthermore, we provide a detailed description of all important aspects to visualize nucleic acid secondary and tertiary structures. With this, we close an important gap in molecular visualization. T3 - ZIB-Report - 18-33 KW - ribonucleic acids KW - DNA KW - RNA KW - secondary & tertiary structures KW - interactive rendering KW - ray casting KW - brushing & linking Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69704 SN - 1438-0064 ER - TY - JOUR A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Leborgne, Morgan A1 - Hege, Hans-Christian T1 - Interactive Visualization of RNA and DNA Structures JF - IEEE Transactions on Visualization and Computer Graphics N2 - The analysis and visualization of nucleic acids (RNA and DNA) is playing an increasingly important role due to their fundamental importance for all forms of life and the growing number of known 3D structures of such molecules. The great complexity of these structures, in particular, those of RNA, demands interactive visualization to get deeper insights into the relationship between the 2D secondary structure motifs and their 3D tertiary structures. Over the last decades, a lot of research in molecular visualization has focused on the visual exploration of protein structures while nucleic acids have only been marginally addressed. In contrast to proteins, which are composed of amino acids, the ingredients of nucleic acids are nucleotides. They form structuring patterns that differ from those of proteins and, hence, also require different visualization and exploration techniques. In order to support interactive exploration of nucleic acids, the computation of secondary structure motifs as well as their visualization in 2D and 3D must be fast. Therefore, in this paper, we focus on the performance of both the computation and visualization of nucleic acid structure. We present a ray casting-based visualization of RNA and DNA secondary and tertiary structures, which enables for the first time real-time visualization of even large molecular dynamics trajectories. Furthermore, we provide a detailed description of all important aspects to visualize nucleic acid secondary and tertiary structures. With this, we close an important gap in molecular visualization. Y1 - 2019 U6 - https://doi.org/10.1109/TVCG.2018.2864507 VL - 25 IS - 1 SP - 967 EP - 976 ER - TY - JOUR A1 - Nyakatura, John A1 - Baumgarten, Roxane A1 - Baum, Daniel A1 - Stark, Heiko A1 - Youlatos, Dionisios T1 - Muscle internal structure revealed by contrast-enhanced μCT and fibre recognition: The hindlimb extensors of an arboreal and a fossorial squirrel JF - Mammalian Biology N2 - In individuals of similar body mass representing closely related species with different lifestyles, muscle architectural properties can be assumed to reflect adaptation to differing, lifestyle-related functional demands. We here employ a fiber recognition algorithm on contrast-enhanced micro-computed tomography (μCT) scans of one specimen each of an arboreal (Sciurus vulgaris) and a fossorial (Spermophilus citellus) sciuromorph rodent. The automated approach accounts for potential heterogeneity of architectural properties within a muscle by analyzing all fascicles that compose a muscle. Muscle architectural properties (volume, fascicle length, and orientation, and force-generating capacity) were quantified in 14 hindlimb (hip, knee, and ankle) extensor muscles and compared between specimens. We expected the arboreal squirrel to exhibit greater force-generating capacity and a greater capacity for length change allowing more powerful hindlimb extension. Generally and mostly matching our expectations, the S. vulgaris specimen had absolutely and relatively larger extensor muscles than the S. citellus specimen which were thus metabolically more expensive and demonstrate the relatively larger investment into powerful hindlimb extension necessary in the arboreal context. We conclude that detailed quantitative data on hindlimb muscle internal structure as was gathered here for a very limited sample further lends support to the notion that muscle architecture reflects adaptation to differential functional demands in closely related species with different locomotor behaviors and lifestyles. Y1 - 2019 U6 - https://doi.org/10.1016/j.mambio.2019.10.007 VL - 99 SP - 71 EP - 80 ER - TY - GEN A1 - Knötel, David A1 - Becker, Carola A1 - Scholtz, Gerhard A1 - Baum, Daniel T1 - Global and Local Mesh Morphing for Complex Biological Objects from microCT Data N2 - We show how biologically coherent mesh models of animals can be created from μCT data to generate artificial yet naturally looking intermediate objects. The whole pipeline of processing algorithms is presented, starting from generating topologically equivalent surface meshes, followed by solving the correspondence problem, and, finally, creating a surface morphing. In this pipeline, we address all the challenges that are due to dealing with complex biological, non-isometric objects. For biological objects it is often particularly important to obtain deformations that look as realistic as possible. In addition, spatially non-uniform shape morphings that only change one part of the surface and keep the rest as stable as possible are of interest for evolutionary studies, since functional modules often change independently from one another. We use Poisson interpolation for this purpose and show that it is well suited to generate both global and local shape deformations. T3 - ZIB-Report - 18-53 KW - Mesh interpolation KW - Geometry processing KW - microCT Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-70618 SN - 1438-0064 ER - TY - CHAP A1 - Knötel, David A1 - Becker, Carola A1 - Scholtz, Gerhard A1 - Baum, Daniel T1 - Global and Local Mesh Morphing for Complex Biological Objects from microCT Data T2 - Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM) N2 - We show how biologically coherent mesh models of animals can be created from μCT data to generate artificial yet naturally looking intermediate objects. The whole pipeline of processing algorithms is presented, starting from generating topologically equivalent surface meshes, followed by solving the correspondence problem, and, finally, creating a surface morphing. In this pipeline, we address all the challenges that are due to dealing with complex biological, non-isometric objects. For biological objects it is often particularly important to obtain deformations that look as realistic as possible. In addition, spatially non-uniform shape morphings that only change one part of the surface and keep the rest as stable as possible are of interest for evolutionary studies, since functional modules often change independently from one another. We use Poisson interpolation for this purpose and show that it is well suited to generate both global and local shape deformations. Y1 - 2018 U6 - https://doi.org/10.2312/vcbm.20181243 SP - 179 EP - 183 CY - Granada, Spain ER - TY - JOUR A1 - Toulkeridou, Evropi A1 - Gutierrez, Carlos Enrique A1 - Baum, Daniel A1 - Doya, Kenji A1 - Economo, Evan P. T1 - Automated segmentation of insect anatomy from micro-CT images using deep learning JF - bioRxiv Y1 - 2021 U6 - https://doi.org/10.1101/2021.05.29.446283 ER - TY - GEN A1 - Ehlers, Sarah A1 - Wessel, Andreas A1 - Baum, Daniel T1 - Segmentation of abdominal chordotonal organs based on semithin serial sections in the Rhododendron leafhopper Graphocephala fennahi (Cicadomorpha: Cicadellidae) N2 - For mating, leafhoppers (Cicadellidae) use substrate-borne vibrational signals to communicate. We provide the first complete description of the abdominal chordotonal organs that enable the perception of these signals. This supplementary data provides the aligned stack of 450 semithin serial sections of the first and second abdominal segment of an adult male Rhododendron leafhopper (Graphocephala fennahi). Further, this supplementary data comprises the segmentation files of five chordotonal organs, the exoskeleton, the segmental nerves and the spiracles of the first and the second abdominal segment. Due to time limitations, the structures of only one half of the body were segmented. The specimen was caught by hand net in September 2018 in Berlin-Tiergarten, Germany. Samples were embedded in Araldite® 502 resin and cut transversally in 1 μm thick sections using a Leica ultramicrotome and a DIATOME Histo Jumbo 6.0 mm diamond knife. Sections were placed on microscopic slides and stained with methylene blue/azur II. The images were taken by means of a 3DHISTECH PANNORAMIC SCAN II slide scanner in the Institute of Pathology Charité in Berlin-Mitte, Germany. Images with a voxel size of 0.273809 μm x 0.273809 μm x 1 μm where obtained. The images were converted from MRXS-files to TIFF-files with the 3DHistech software Slide Converter 2.3. Using Photoshop, the images were cropped to the same canvas size and artefacts were removed. All further steps, such as alignment and segmentation, were done with the software Amira. In order to facilitate the further processing of the dataset, the voxels where resampled to a size of 0.547619 μm x 0.547619 μm x 1 μm. Y1 - 2021 U6 - https://doi.org/10.12752/8326 N1 - Supplementary data to reproduce and understand the description of the morphology of the abdominal chordotonal organs in Graphocephala fennahi. ER - TY - GEN A1 - Baum, Daniel A1 - Giliard, Nicole A1 - Hasler, Tim A1 - Peters-Kottig, Wolfgang T1 - Leitlinien zum Umgang mit Forschungsdaten am Zuse-Institut Berlin N2 - Die nachhaltige Sicherung und Bereitstellung von Forschungsdaten dienen nicht nur der Reproduzierbarkeit früherer Ergebnisse, sondern in hohem Maße auch der Erzielung künftiger Ergebnisse mit dem Ziel, die Qualität, Produktivität und Wettbewerbsfähigkeit der Wissenschaft zu fördern. Die folgenden Grundsätze gelten als Leitlinien zur Handhabung von Forschungsdaten im ZIB. Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73781 CY - Berlin ER - TY - THES A1 - Baum, Daniel T1 - A Point-Based Algorithm for Multiple 3D Surface Alignment of Drug-Sized Molecules N2 - One crucial step in virtual drug design is the identification of new lead structures with respect to a pharmacological target molecule. The search for new lead structures is often done with the help of a pharmacophore, which carries the essential structural as well as physico-chemical properties that a molecule needs to have in order to bind to the target molecule. In the absence of the target molecule, such a pharmacophore can be established by comparison of a set of active compounds. In order to identify their common features,a multiple alignment of all or most of the active compounds is necessary. Moreover, since the “outer shape” of the molecules plays a major role in the interaction between drug and target, an alignment algorithm aiming at the identification of common binding properties needs to consider the molecule’s “outer shape”, which can be approximated by the solvent excluded surface. In this thesis, we present a new approach to molecular surface alignment based on a discrete representation of shape as well as physico-chemical properties by points distributed on the solvent excluded surface. We propose a new method to distribute points regularly on a surface w.r.t. a smoothly varying point density given on that surface. Since the point distribution algorithm is not restricted to molecular surfaces, it might also be of interest for other applications. For the computation of pairwise surface alignments, we extend an existing point matching scheme to surface points, and we develop an efficient data structure speeding up the computation by a factor of three. Moreover, we present an approach to compute multiple alignments from pairwise alignments, which is able to handle a large number of surface points. All algorithms are evaluated on two sets of molecules: eight thermolysin inhibitors and seven HIV-1 protease inhibitors. Finally, we compare the results obtained from surface alignment with the results obtained by applying an atom alignment approach. N2 - Die Identifizierung neuer Leitstrukturen (lead structures) zur Entwicklung optimierter Wirkstoffe ist ein äußerst wichtiger Schritt in der virtuellen Wirkstoffentwicklung (virtual drug design). Die Suche nach neuen Leitstrukturen wird oft mit Hilfe eines Pharmakophor-Modells durchgeführt, welches die wichtigsten strukturellen wie auch physiko-chemischen Eigenschaften eines bindenden Moleküls in sich vereint. Ist das Zielmolekül (target) nicht bekannt, kann das Pharmakophor-Modell mit Hilfe des Vergleiches aktiver Moleküle erstellt werden. Hier ist insbesondere die gleichzeitige Überlagerung (multiple alignment) aller oder nahezu aller Moleküle notwendig. Da bei der Interaktion zweier Moleküle die "äußere Form" der Moleküle eine besondere Rolle spielt, sollte diese von jedem Überlagerungsalgorithmus, der sich mit der Identifizierung von Bindungseigenschaften befasst, berücksichtigt werden. Dabei kann die "äußere Form" durch eine bestimmte Art von molekularer Oberfläche approximiert werden, die man als solvent excluded surface bezeichnet. In dieser Arbeit stellen wir einen neuen Ansatz zur Überlagerung molekularer Oberflächen dar, der auf einer diskreten Repräsentation sowohl der Form als auch der molekularen Eigenschaften mittels Punkten beruht. Um die Punkte auf der molekularen Oberfläche möglichst regulär entsprechend einer gegebenen Punktdichte zu verteilen, entwickeln wir eine neue Methode. Diese Methode ist nicht auf Moleküloberflächen beschränkt und könnte daher auch für andere Anwendungen von Interesse sein. Basierend auf einem bekannten Point-Matching Verfahren entwickeln wir einen Point-Matching Algorithmus für Oberflächenpunkte. Dazu erarbeiten wir u.a. eine effiziente Datenstruktur, die den Algorithmus um einen Faktor von drei beschleunigt. Darüberhinaus stellen wir einen Ansatz vor, der Mehrfachüberlagerungen (multiple alignments) aus paarweisen Überlagerungen berechnet. Die Herausforderung besteht hierbei vor allem in der großen Anzahl von Punkten, die berücksichtigt werden muss. Die vorgestellten Algorithmen werden an zwei Gruppen von Molekülen evaluiert, wobei die erste Gruppe aus acht Thermolysin Inhibitoren besteht, die zweite aus sieben HIV-1 Protease Inhibitoren. Darüberhinaus vergleichen wir die Ergebnisse der Oberflächenüberlagerung mit denen einer Atommittelpunktüberlagerung. KW - molecular surface alignment KW - point-based approximation KW - multiple alignment Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:188-fudissthesis000000002759-2 UR - http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000002759 ER - TY - GEN A1 - Baum, Daniel A1 - Lindow, Norbert A1 - Hege, Hans-Christian A1 - Lepper, Verena A1 - Siopi, Tzulia A1 - Kutz, Frank A1 - Mahlow, Kristin A1 - Mahnke, Heinz-Eberhard T1 - Revealing hidden text in rolled and folded papyri N2 - Ancient Egyptian papyri are often folded, rolled up or kept as small packages, sometimes even sealed. Physically unrolling or unfolding these packages might severely damage them. We demonstrate a way to get access to the hidden script without physical unfolding by employing computed tomography and mathematical algorithms for virtual unrolling and unfolding. Our algorithmic approaches are combined with manual interaction. This provides the necessary flexibility to enable the unfolding of even complicated and partly damaged papyrus packages. In addition, it allows us to cope with challenges posed by the structure of ancient papyrus, which is rather irregular, compared to other writing substrates like metallic foils or parchment. Unfolding of packages is done in two stages. In the first stage, we virtually invert the physical folding process step by step until the partially unfolded package is topologically equivalent to a scroll or a papyrus sheet folded only along one fold line. To minimize distortions at this stage, we apply the method of moving least squares. In the second stage, the papyrus is simply flattened, which requires the definition of a medial surface. We have applied our software framework to several papyri. In this work, we present the results of applying our approaches to mockup papyri that were either rolled or folded along perpendicular fold lines. In the case of the folded papyrus, our approach represents the first attempt to address the unfolding of such complicated folds. T3 - ZIB-Report - 17-02 KW - unfolding, papyri, computed tomography Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61826 SN - 1438-0064 ER - TY - GEN A1 - Klindt, Marco A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Hege, Hans-Christian T1 - iCon.text – a customizable iPad app for kiosk applications in museum exhibitions N2 - We present iCon.text, a kiosk platform for the iPad centered around artefacts, whose content and layout can be tailored without programming skills for specific museum exhibitions. The central metaphor to access information is a virtual postcard with one front and a customizable number of back sides that provide details about exhibits to museum visitors in textual and image form. Back sides can link to others cards. Access to these postcards is possible through one or more navigation views that can be navigated to from a navigation bar. The entry point to the application is designed as a multitouch interactive pile of cards in a playful manner that allows visitors of any age an easy approach to the presentation and interaction metaphor. To directly access a certain postcard, a mosaic view can be uitilized to provide an overview about all available exhibits. A category view groups postcards into themes. Locating artefacts on a zoomable map or exhibition floor plan allows for conveying information about spatial contexts between different objects and their location. Furthermore, contexts can be illustrated with a two stage view comprising an overview and corresponding detail views to provide further insights into the spatial, temporal, and thematic contexts of artefacts. The application scaffolding allows the design of bilingual presentations to support exhibitions with an international audience. The logo of the presenting institution or exhibition can be incorporated to display the the kiosk's corporate design branding and to access an imprint or further informations. Usage is logged into files to provide a basis for extracting statistical information about the usage. The details about the exhibits are presented as images and as such impose no limit to the design choices made by the content provider or exhibition designer. The application (enhanced with a panoramic view) has been integrated successfully into a large special exhibition about the ancient city of Pergamon 2011/2012 at the Pergamon Museum Berlin within the interdisciplinary project "Berlin Sculpture Network". T3 - ZIB-Report - 13-07 KW - HCI KW - Cultural Heritage KW - Kiosk application KW - iPad Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17731 SN - 1438-0064 ER - TY - GEN A1 - Weber, Britta A1 - Tranfield, Erin M. A1 - Höög, Johanna L. A1 - Baum, Daniel A1 - Antony, Claude A1 - Hyman, Tony A1 - Verbavatz, Jean-Marc A1 - Prohaska, Steffen T1 - Automated stitching of microtubule centerlines across serial electron tomograms N2 - Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts’ opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort. T3 - ZIB-Report - 14-41 KW - electron tomography KW - microtubules KW - serial sectioning KW - image analysis KW - geometry reconstruction KW - image and geometry alignment KW - point correspondence Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-52958 SN - 1438-0064 ER - TY - JOUR A1 - Mahnke, Heinz-Eberhard A1 - Arlt, Tobias A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Herter, Felix A1 - Lindow, Norbert A1 - Manke, Ingo A1 - Siopi, Tzulia A1 - Menei, Eve A1 - Etienne, Marc A1 - Lepper, Verena T1 - Virtual unfolding of folded papyri JF - Journal of Cultural Heritage N2 - The historical importance of ancient manuscripts is unique since they provide information about the heritage of ancient cultures. Often texts are hidden in rolled or folded documents. Due to recent impro- vements in sensitivity and resolution, spectacular disclosures of rolled hidden texts were possible by X-ray tomography. However, revealing text on folded manuscripts is even more challenging. Manual unfolding is often too risky in view of the fragile condition of fragments, as it can lead to the total loss of the document. X-ray tomography allows for virtual unfolding and enables non-destructive access to hid- den texts. We have recently demonstrated the procedure and tested unfolding algorithms on a mockup sample. Here, we present results on unfolding ancient papyrus packages from the papyrus collection of the Musée du Louvre, among them objects folded along approximately orthogonal folding lines. In one of the packages, the first identification of a word was achieved, the Coptic word for “Lord”. Y1 - 2020 U6 - https://doi.org/10.1016/j.culher.2019.07.007 VL - 41 SP - 264 EP - 269 PB - Elsevier ER - TY - GEN A1 - Mahnke, Heinz-Eberhard A1 - Arlt, Tobias A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Herter, Felix A1 - Lindow, Norbert A1 - Manke, Ingo A1 - Siopi, Tzulia A1 - Menei, Eve A1 - Etienne, Marc A1 - Lepper, Verena T1 - Virtual unfolding of folded papyri N2 - The historical importance of ancient manuscripts is unique since they provide information about the heritage of ancient cultures. Often texts are hidden in rolled or folded documents. Due to recent impro- vements in sensitivity and resolution, spectacular disclosures of rolled hidden texts were possible by X-ray tomography. However, revealing text on folded manuscripts is even more challenging. Manual unfolding is often too risky in view of the fragile condition of fragments, as it can lead to the total loss of the document. X-ray tomography allows for virtual unfolding and enables non-destructive access to hid- den texts. We have recently demonstrated the procedure and tested unfolding algorithms on a mockup sample. Here, we present results on unfolding ancient papyrus packages from the papyrus collection of the Musée du Louvre, among them objects folded along approximately orthogonal folding lines. In one of the packages, the first identification of a word was achieved, the Coptic word for “Lord”. T3 - ZIB-Report - 19-44 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74338 SN - 1438-0064 ER - TY - JOUR A1 - Baum, Daniel A1 - Herter, Felix A1 - Larsen, John Møller A1 - Lichtenberger, Achim A1 - Raja, Rubina T1 - Revisiting the Jerash Silver Scroll: a new visual data analysis approach JF - Digital Applications in Archaeology and Cultural Heritage N2 - This article revisits a complexly folded silver scroll excavated in Jerash, Jordan in 2014 that was digitally examined in 2015. In this article we apply, examine and discuss a new virtual unfolding technique that results in a clearer image of the scroll’s 17 lines of writing. We also compare it to the earlier unfolding and discuss progress in general analytical tools. We publish the original and the new images as well as the unfolded volume data open access in order to make these available to researchers interested in optimising unfolding processes of various complexly folded materials. Y1 - 2021 U6 - https://doi.org/10.1016/j.daach.2021.e00186 VL - 21 SP - e00186 ER - TY - GEN A1 - Baum, Daniel A1 - Herter, Felix A1 - Lepper, Verena T1 - Jerash Silver Scroll: Virtually Unfolded Volume T2 - figshare N2 - A new virtual unfolding technique was applied to a silver scroll excavated in Jerash, Jordan, in 2014. As result of the unfolding, 17 lines of writing are clearly visible in the unfolded volumetric data that is published here. Y1 - 2020 U6 - https://doi.org/10.6084/m9.figshare.12145236 ER - TY - GEN A1 - Baum, Daniel T1 - Finding All Maximal Cliques of a Family of Induced Subgraphs N2 - Many real world problems can be mapped onto graphs and solved with well-established efficient algorithms studied in graph theory. One such problem is to find large sets of points satisfying some mutual relationship. This problem can be transformed to the problem of finding all cliques of an undirected graph by mapping each point onto a vertex of the graph and connecting any two vertices by an edge whose corresponding points satisfy our desired relationship. Clique detection has been widely studied and there exist efficient algorithms. In this paper we study a related problem, where all points have a set of binary attributes, each of which is either 0 or 1. This is only a small limitation, since all discrete properties can be mapped onto binary attributes. In our case, we want to find large sets of points not only satisfying some mutual relationship; but, in addition, all points of a set also need to have at least one common attribute with value 1. The problem we described can be mapped onto a set of induced subgraphs, where each subgraph represents a single attribute. For attribute $i$, its associated subgraph contains those vertices corresponding to the points with attribute $i$ set to 1. We introduce the notion of a maximal clique of a family, $\mathcal{G}$, of induced subgraphs of an undirected graph, and show that determining all maximal cliques of $\mathcal{G}$ solves our problem. Furthermore, we present an efficient algorithm to compute all maximal cliques of $\mathcal{G}$. The algorithm we propose is an extension of the widely used Bron-Kerbosch algorithm. T3 - ZIB-Report - 03-53 KW - Bron-Kerbosch algorithm KW - maximal cliques KW - vertex properties KW - family of induced subgraphs KW - backtracking algorithm KW - branch and bound technique KW - re Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7758 ER - TY - JOUR A1 - Berio, Fidji A1 - Bayle, Yann A1 - Baum, Daniel A1 - Goudemand, Nicolas A1 - Debiais-Thibaud, Mélanie T1 - Hide and seek shark teeth in Random Forests: Machine learning applied to Scyliorhinus canicula populations JF - PeerJ - Aquatic Biology N2 - Shark populations that are distributed alongside a latitudinal gradient often display body size differences at sexual maturity and vicariance patterns related to their number of tooth files. Previous works have demonstrated that Scyliorhinus canicula exhibits distinct genetic structures, life history traits, and body size differences between populations inhabiting the North Atlantic Ocean and the Mediterranean Sea. In this work, we sample more than 3,000 S. canicula teeth from 56 specimens and provide and use a dataset containing their shape coordinates. We investigate tooth shape and form differences between a Mediterranean and an Atlantic S. canicula population using two approaches. Classification results show that the classical geometric morphometric framework is outperformed by an original Random Forests-based framework. Visually, both S. canicula populations share similar ontogenetic trends and timing of gynandric heterodonty emergence but the Atlantic population has bigger, blunter teeth, and less numerous accessory cusps than the Mediterranean population. According to the models, the populations are best differentiated based on their lateral tooth edges, which bear accessory cusps, and the tooth centroid sizes significantly improve classification performances. The differences observed are discussed in light of dietary and behavioural habits of the populations considered. The method proposed in this study could be further adapted to complement DNA analyses to identify shark species or populations based on tooth morphologies. This process would be of particular interest for fisheries management and identification of shark fossils. Y1 - 2022 U6 - https://doi.org/10.7717/peerj.13575 SP - 10:e13575 ER - TY - JOUR A1 - Schmitt, Benedikt A1 - Titschack, Jürgen A1 - Baum, Daniel T1 - Polyp-Cavity Segmentation of Cold-Water Corals guided by Ambient Occlusion and Ambient Curvature JF - Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM) N2 - The segmentation of cavities in three-dimensional images of arbitrary objects is a difficult problem since the cavities are usually connected to the outside of the object without any difference in image intensity. Hence, the information whether a voxel belongs to a cavity or the outside needs to be derived from the ambient space. If a voxel is enclosed by object material, it is very likely that this voxel belongs to a cavity. However, there are dense structures where a voxel might still belong to the outside even though it is surrounded to a large degree by the object. This is, for example, the case for coral colonies. Therefore, additional information needs to be considered to distinguish between those cases. In this paper, we introduce the notion of ambient curvature, present an efficient way to compute it, and use it to segment coral polyp cavities by integrating it into the ambient occlusion framework. Moreover, we combine the ambient curvature with other ambient information in a Gaussian mixture model, trained from a few user scribbles, resulting in a significantly improved cavity segmentation. We showcase the superiority of our approach using four coral colonies of very different morphological types. While in this paper we restrict ourselves to coral data, we believe that the concept of ambient curvature is also useful for other data. Furthermore, our approach is not restricted to curvature but can be easily extended to exploit any properties given on an object's surface, thereby adjusting it to specific applications. Y1 - 2022 U6 - https://doi.org/10.2312/vcbm.20221189 ER - TY - JOUR A1 - Laguillo-Diego, Alejandra A1 - Kiewisz, Robert A1 - Martí-Gómez, Carlos A1 - Baum, Daniel A1 - Müller-Reichert, Thomas A1 - Vernos, Isabelle T1 - MCRS1 modulates the heterogeneity of microtubule minus-end morphologies in mitotic spindles JF - Molecular Biology of the Cell N2 - Faithful chromosome segregation requires the assembly of a bipolar spindle, consisting of two antiparallel microtubule (MT) arrays having most of their minus ends focused at the spindle poles and their plus ends overlapping in the spindle midzone. Spindle assembly, chromosome alignment and segregation require highly dynamic MTs. The plus ends of MTs have been extensively investigated; instead, their minus end structure remains poorly characterized. Here, we used large-scale electron tomography to study the morphology of the MT minus ends in 3D-reconstructed metaphase spindles in HeLa cells. In contrast to the homogeneous open morphology of the MT plus ends at the kinetochores, we found that MT minus ends are heterogeneous showing either open or closed morphologies. Silencing the minus-end specific stabilizer, MCRS1 increased the proportion of open MT minus ends. Altogether, these data suggest a correlation between the morphology and the dynamic state of the MT ends. Taking this heterogeneity of the MT minus end morphologies into account, our work indicates an unsynchronized behavior of MTs at the spindle poles, thus laying the ground for further studies on the complexity of MT dynamics regulation. Y1 - 2022 U6 - https://doi.org/10.1091/mbc.E22-08-0306-T VL - 34 IS - 1 ER - TY - JOUR A1 - Becker, Kaitlyn P A1 - Teeple, Clark A1 - Charles, Nicholas A1 - Jung, Yeonsu A1 - Baum, Daniel A1 - Weaver, James C A1 - Mahadevan, L. A1 - Wood, Robert J T1 - Active entanglement enables stochastic, topological grasping JF - PNAS N2 - Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here we circumvent the need for feedback or precise planning by using an array of fluidically-actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy, and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides new options for soft, adaptable grasping. Y1 - 2022 U6 - https://doi.org/10.1073/pnas.2209819119 VL - 119 IS - 42 SP - e2209819119 ER - TY - GEN A1 - Berio, Fidji A1 - Bayle, Yann A1 - Agret, Sylvie A1 - Baum, Daniel A1 - Goudemand, Nicolas A1 - Debiais-Thibaud, Mélanie T1 - 3D models related to the publication: Hide and seek shark teeth in Random Forests: Machine learning applied to Scyliorhinus canicula T2 - MorphoMuseuM N2 - The present dataset contains the 3D models analyzed in Berio, F., Bayle, Y., Baum, D., Goudemand, N., and Debiais-Thibaud, M. 2022. Hide and seek shark teeth in Random Forests: Machine learning applied to Scyliorhinus canicula. It contains the head surfaces of 56 North Atlantic and Mediterranean small-spotted catsharks Scyliorhinus canicula, from which tooth surfaces were further extracted to perform geometric morphometrics and machine learning. Y1 - 2022 U6 - https://doi.org/10.18563/journal.m3.164 ER - TY - JOUR A1 - Ehlers, Sarah A1 - Baum, Daniel A1 - Mühlethaler, Roland A1 - Hoch, Hannelore A1 - Bräunig, Peter T1 - Large abdominal mechanoreceptive sense organs in small plant-dwelling insects JF - Biology Letters N2 - The Hemiptera is the largest non-endopterygote insect order comprising approximately 98,000 recent species. All species of the suborders Cicadomorpha (leafhoppers, spittlebugs, treehoppers and cicadas) and Fulgoromorpha (planthoppers) feed by sucking sap from plant tissues and are thus often vectors for economically important phytopathogens. Except for the cicadas (Cicadomorpha: Cicadoidea: Cicadidae) which produce air-borne sounds, all species of the suborders Cicadomorpha and Fulgoromorpha communicate by vibrational (substrate-borne) signals. While the generation of these signals has been extensively investigated, the mechanisms of perception are poorly understood. This study provides a full description and 3D reconstruction of a large and complex array of six paired chordotonal organs in the first abdominal segments of the Rhododendron leafhopper Graphocephala fennahi (Cicadomorpha: Membracoidea: Cicadellidae). Further we were able to identify homologous organs in the closely related spittlebug Philaenus spumarius (Cicadomorpha: Cercopoidea: Aphrophoridae) and the planthopper Issus coleoptratus (Fulgoromorpha: Fulgoroidea: Issidae). The configuration is congruent with the abdominal chordotonal organs in cicadas, where one of them is an elaborate tympanal organ. This indicates that these organs, together with the tymbal organ constitute a synapomorphy of the Tymbalia (Hemiptera excl. Sternorrhyncha). Our results contribute to the understanding of the evolution from substrate-borne to airborne communication in insects. Y1 - 2022 U6 - https://doi.org/10.1098/rsbl.2022.0078 VL - 18 IS - 4 ER - TY - GEN A1 - Baum, Daniel T1 - Multiple Semi-flexible 3D Superposition of Drug-sized Molecules N2 - In this paper we describe a new algorithm for multiple semi-flexible superpositioning of drug-sized molecules. The algorithm identifies structural similarities of two or more molecules. When comparing a set of molecules on the basis of their three-dimensional structures, one is faced with two main problems. (1) Molecular structures are not fixed but flexible, i.e., a molecule adopts different forms. To address this problem, we consider a set of conformers per molecule. As conformers we use representatives of conformational ensembles, generated by the program ZIBMol. (2) The degree of similarity may vary considerably among the molecules. This problem is addressed by searching for similar substructures present in arbitrary subsets of the given set of molecules. The algorithm requires to preselect a reference molecule. All molecules are compared to this reference molecule. For this pairwise comparison we use a two-step approach. Clique detection on the correspondence graph of the molecular structures is used to generate start transformations, which are then iteratively improved to compute large common substructures. The results of the pairwise comparisons are efficiently merged using binary matching trees. All common substructures that were found, whether they are common to all or only a few molecules, are ranked according to different criteria, such as number of molecules containing the substructure, size of substructure, and geometric fit. For evaluating the geometric fit, we extend a known scoring function by introducing weights which allow to favor potential pharmacophore points. Despite considering the full atomic information for identifying multiple structural similarities, our algorithm is quite fast. Thus it is well suited as an interactive tool for the exploration of structural similarities of drug-sized molecules. T3 - ZIB-Report - 04-52 KW - pharmaceutical drug design KW - multiple superposition KW - semi-flexible alignment KW - clique detection KW - iterative closest point KW - matching tree Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8278 ER - TY - JOUR A1 - Tomholt, Lara A1 - Baum, Daniel A1 - Wood, Robert J. A1 - Weaver, James C. T1 - High-throughput segmentation, data visualization, and analysis of sea star skeletal networks JF - Journal of Structural Biology N2 - The remarkably complex skeletal systems of the sea stars (Echinodermata, Asteroidea), consisting of hundreds to thousands of individual elements (ossicles), have intrigued investigators for more than 150 years. While the general features and structural diversity of isolated asteroid ossicles have been well documented in the literature, the task of mapping the spatial organization of these constituent skeletal elements in a whole-animal context represents an incredibly laborious process, and as such, has remained largely unexplored. To address this unmet need, particularly in the context of understanding structure-function relationships in these complex skeletal systems, we present an integrated approach that combines micro-computed tomography, semi-automated ossicle segmentation, data visualization tools, and the production of additively manufactured tangible models to reveal biologically relevant structural data that can be rapidly analyzed in an intuitive manner. In the present study, we demonstrate this high-throughput workflow by segmenting and analyzing entire skeletal systems of the giant knobby star, Pisaster giganteus, at four different stages of growth. The in-depth analysis, presented herein, provides a fundamental understanding of the three-dimensional skeletal architecture of the sea star body wall, the process of skeletal maturation during growth, and the relationship between skeletal organization and morphological characteristics of individual ossicles. The widespread implementation of this approach for investigating other species, subspecies, and growth series has the potential to fundamentally improve our understanding of asteroid skeletal architecture and biodiversity in relation to mobility, feeding habits, and environmental specialization in this fascinating group of echinoderms. Y1 - 2023 U6 - https://doi.org/10.1016/j.jsb.2023.107955 VL - 215 IS - 2 SP - 107955 ER - TY - JOUR A1 - Sterzik, Anna A1 - Lichtenberg, Nils A1 - Krone, Michael A1 - Baum, Daniel A1 - Cunningham, Douglas W. A1 - Lawonn, Kai T1 - Enhancing molecular visualization: Perceptual evaluation of line variables with application to uncertainty visualization JF - Computers & Graphics N2 - Data are often subject to some degree of uncertainty, whether aleatory or epistemic. This applies both to experimental data acquired with sensors as well as to simulation data. Displaying these data and their uncertainty faithfully is crucial for gaining knowledge. Specifically, the effective communication of the uncertainty can influence the interpretation of the data and the user’s trust in the visualization. However, uncertainty-aware visualization has gotten little attention in molecular visualization. When using the established molecular representations, the physicochemical attributes of the molecular data usually already occupy the common visual channels like shape, size, and color. Consequently, to encode uncertainty information, we need to open up another channel by using feature lines. Even though various line variables have been proposed for uncertainty visualizations, they have so far been primarily used for two-dimensional data and there has been little perceptual evaluation. Thus, we conducted two perceptual studies to determine the suitability of the line variables blur, dashing, grayscale, sketchiness, and width for distinguishing several values in molecular visualizations. While our work was motivated by uncertainty visualization, our techniques and study results also apply to other types of scalar data. Y1 - 2023 U6 - https://doi.org/10.1016/j.cag.2023.06.006 VL - 114 SP - 401 EP - 413 ER - TY - GEN A1 - Hoerth, Rebecca M. A1 - Baum, Daniel A1 - Knötel, David A1 - Prohaska, Steffen A1 - Willie, Bettina M. A1 - Duda, Georg A1 - Hege, Hans-Christian A1 - Fratzl, Peter A1 - Wagermaier, Wolfgang T1 - Registering 2D and 3D Imaging Data of Bone during Healing N2 - Purpose/Aims of the Study: Bone’s hierarchical structure can be visualized using a variety of methods. Many techniques, such as light and electron microscopy generate two-dimensional (2D) images, while micro computed tomography (μCT) allows a direct representation of the three-dimensional (3D) structure. In addition, different methods provide complementary structural information, such as the arrangement of organic or inorganic compounds. The overall aim of the present study is to answer bone research questions by linking information of different 2D and 3D imaging techniques. A great challenge in combining different methods arises from the fact that they usually reflect different characteristics of the real structure. Materials and Methods: We investigated bone during healing by means of μCT and a couple of 2D methods. Backscattered electron images were used to qualitatively evaluate the tissue’s calcium content and served as a position map for other experimental data. Nanoindentation and X-ray scattering experiments were performed to visualize mechanical and structural properties. Results: We present an approach for the registration of 2D data in a 3D μCT reference frame, where scanning electron microscopies serve as a methodic link. Backscattered electron images are perfectly suited for registration into μCT reference frames, since both show structures based on the same physical principles. We introduce specific registration tools that have been developed to perform the registration process in a semi-automatic way. Conclusions: By applying this routine, we were able to exactly locate structural information (e.g. mineral particle properties) in the 3D bone volume. In bone healing studies this will help to better understand basic formation, remodeling and mineralization processes. T3 - ZIB-Report - 15-01 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-53426 SN - 1438-0064 ER - TY - CHAP A1 - Mayer, Julius A1 - Baum, Daniel A1 - Ambellan, Felix A1 - von Tycowicz, Christoph T1 - A Soft-Correspondence Approach to Shape-based Disease Grading with Graph Convolutional Networks T2 - Proceedings of Machine Learning Research N2 - Shape analysis provides principled means for understanding anatomical structures from medical images. The underlying notions of shape spaces, however, come with strict assumptions prohibiting the analysis of incomplete and/or topologically varying shapes. This work aims to alleviate these limitations by adapting the concept of soft correspondences. In particular, we present a graph-based learning approach for morphometric classification of disease states that is based on a generalized notion of shape correspondences in terms of functional maps. We demonstrate the performance of the derived classifier on the open-access ADNI database for differentiating normal controls and subjects with Alzheimer’s disease. Notably, our experiment shows that our approach can improve over state-of-the-art from geometric deep learning. Y1 - 2022 VL - 194 SP - 85 EP - 95 ER - TY - JOUR A1 - Zemann, Berit A1 - Le, Mai-Lee Van A1 - Sherlock, Rob E. A1 - Baum, Daniel A1 - Katija, Kakani A1 - Stach, Thomas T1 - Evolutionary traces of miniaturization in a giant – Comparative anatomy of brain and brain nerves in Bathochordaeus stygius (Tunicata, Appendicularia) JF - Journal of Morphology Y1 - 2023 U6 - https://doi.org/10.1002/jmor.21598 VL - 284 IS - 7 ER - TY - JOUR A1 - Klenert, Nicolas A1 - Lepper, Verena A1 - Baum, Daniel T1 - A Local Iterative Approach for the Extraction of 2D Manifolds from Strongly Curved and Folded Thin-Layer Structures JF - IEEE Transactions on Visualization and Computer Graphics N2 - Ridge surfaces represent important features for the analysis of 3-dimensional (3D) datasets in diverse applications and are often derived from varying underlying data including flow fields, geological fault data, and point data, but they can also be present in the original scalar images acquired using a plethora of imaging techniques. Our work is motivated by the analysis of image data acquired using micro-computed tomography (μCT) of ancient, rolled and folded thin-layer structures such as papyrus, parchment, and paper as well as silver and lead sheets. From these documents we know that they are 2-dimensional (2D) in nature. Hence, we are particularly interested in reconstructing 2D manifolds that approximate the document’s structure. The image data from which we want to reconstruct the 2D manifolds are often very noisy and represent folded, densely-layered structures with many artifacts, such as ruptures or layer splitting and merging. Previous ridge-surface extraction methods fail to extract the desired 2D manifold for such challenging data. We have therefore developed a novel method to extract 2D manifolds. The proposed method uses a local fast marching scheme in combination with a separation of the region covered by fast marching into two sub-regions. The 2D manifold of interest is then extracted as the surface separating the two sub-regions. The local scheme can be applied for both automatic propagation as well as interactive analysis. We demonstrate the applicability and robustness of our method on both artificial data as well as real-world data including folded silver and papyrus sheets. Y1 - 2023 U6 - https://doi.org/10.1109/TVCG.2023.3327403 ER - TY - JOUR A1 - Fogalli, Giovani Bressan A1 - Peres Line, Sérgio Roberto A1 - Baum, Daniel T1 - Segmentation of tooth enamel microstructure images using classical image processing and U-Net approaches JF - Frontiers in Imaging N2 - Tooth enamel is the hardest tissue in human organism, formed by prism layers in regularly alternating directions. These prisms form the Hunter-Schreger Bands (HSB) pattern when under side illumination, which is composed of light and dark stripes resembling fingerprints. We have shown in previous works that HSB pattern is highly variable, seems to be unique for each tooth and can be used as a biometric method for human identification. Since this pattern cannot be acquired with sensors, the HSB region in the digital photograph must be identified and correctly segmented from the rest of the tooth and background. Although these areas can be manually removed, this process is not reliable as excluded areas can vary according to the individual‘s subjective impression. Therefore, the aim of this work was to develop an algorithm that automatically selects the region of interest (ROI), thus, making the entire biometric process straightforward. We used two different approaches: a classical image processing method which we called anisotropy-based segmentation (ABS) and a machine learning method known as U-Net, a fully convolutional neural network. Both approaches were applied to a set of extracted tooth images. U-Net with some post processing outperformed ABS in the segmentation task with an Intersection Over Union (IOU) of 0.837 against 0.766. Even with a small dataset, U-Net proved to be a potential candidate for fully automated in-mouth application. However, the ABS technique has several parameters which allow a more flexible segmentation with interactive adjustments specific to image properties. Y1 - 2023 U6 - https://doi.org/10.3389/fimag.2023.1215764 VL - 2 ER - TY - JOUR A1 - Hajarolasvadi, Noushin A1 - Sunkara, Vikram A1 - Khavnekar, Sagar A1 - Beck, Florian A1 - Brandt, Robert A1 - Baum, Daniel T1 - Volumetric macromolecule identification in cryo-electron tomograms using capsule networks JF - BMC Bioinformatics N2 - Background: Despite recent advances in cellular cryo-electron tomography (CET), developing automated tools for macromolecule identification in submolecular resolution remains challenging due to the lack of annotated data and high structural complexities. To date, the extent of the deep learning methods constructed for this problem is limited to conventional Convolutional Neural Networks (CNNs). Identifying macromolecules of different types and sizes is a tedious and time-consuming task. In this paper, we employ a capsule-based architecture to automate the task of macro- molecule identification, that we refer to as 3D-UCaps. In particular, the architecture is composed of three components: feature extractor, capsule encoder, and CNN decoder. The feature extractor converts voxel intensities of input sub-tomograms to activities of local features. The encoder is a 3D Capsule Network (CapsNet) that takes local features to generate a low-dimensional representation of the input. Then, a 3D CNN decoder reconstructs the sub-tomograms from the given representation by upsampling. Results: We performed binary and multi-class localization and identification tasks on synthetic and experimental data. We observed that the 3D-UNet and the 3D-UCaps had an F1−score mostly above 60% and 70%, respectively, on the test data. In both network architectures, we observed degradation of at least 40% in the F1-score when identifying very small particles (PDB entry 3GL1) compared to a large particle (PDB entry 4D8Q). In the multi-class identification task of experimental data, 3D-UCaps had an F1-score of 91% on the test data in contrast to 64% of the 3D-UNet. The better F1-score of 3D-UCaps compared to 3D-UNet is obtained by a higher precision score. We speculate this to be due to the capsule network employed in the encoder. To study the effect of the CapsNet-based encoder architecture further, we performed an ablation study and perceived that the F1-score is boosted as network depth is increased which is in contrast to the previously reported results for the 3D-UNet. To present a reproducible work, source code, trained models, data as well as visualization results are made publicly available. Conclusion: Quantitative and qualitative results show that 3D-UCaps successfully perform various downstream tasks including identification and localization of macro- molecules and can at least compete with CNN architectures for this task. Given that the capsule layers extract both the existence probability and the orientation of the molecules, this architecture has the potential to lead to representations of the data that are better interpretable than those of 3D-UNet. Y1 - 2022 U6 - https://doi.org/10.1186/s12859-022-04901-w VL - 23 IS - 360 ER - TY - JOUR A1 - Toulkeridou, Evropi A1 - Gutierrez, Carlos Enrique A1 - Baum, Daniel A1 - Doya, Kenji A1 - Economo, Evan P. T1 - Automated segmentation of insect anatomy from micro-CT images using deep learning JF - Natural Sciences N2 - Three-dimensional (3D) imaging, such as micro-computed tomography (micro-CT), is increasingly being used by organismal biologists for precise and comprehensive anatomical characterization. However, the segmentation of anatomical structures remains a bottleneck in research, often requiring tedious manual work. Here, we propose a pipeline for the fully-automated segmentation of anatomical structures in micro-CT images utilizing state-of-the-art deep learning methods, selecting the ant brain as a test case. We implemented the U-Net architecture for 2D image segmentation for our convolutional neural network (CNN), combined with pixel-island detection. For training and validation of the network, we assembled a dataset of semi-manually segmented brain images of 76 ant species. The trained network predicted the brain area in ant images fast and accurately; its performance tested on validation sets showed good agreement between the prediction and the target, scoring 80% Intersection over Union (IoU) and 90% Dice Coefficient (F1) accuracy. While manual segmentation usually takes many hours for each brain, the trained network takes only a few minutes. Furthermore, our network is generalizable for segmenting the whole neural system in full-body scans, and works in tests on distantly related and morphologically divergent insects (e.g., fruit flies). The latter suggests that methods like the one presented here generally apply across diverse taxa. Our method makes the construction of segmented maps and the morphological quantification of different species more efficient and scalable to large datasets, a step toward a big data approach to organismal anatomy. Y1 - 2023 U6 - https://doi.org/10.1002/ntls.20230010 VL - 3 IS - 4 ER - TY - JOUR A1 - Longren, Luke L. A1 - Eigen, Lennart A1 - Shubitidze, Ani A1 - Lieschnegg, Oliver A1 - Baum, Daniel A1 - Nyakatura, John A. A1 - Hildebrandt, Thomas A1 - Brecht, Michael T1 - Dense Reconstruction of Elephant Trunk Musculature JF - Current Biology N2 - The elephant trunk operates as a muscular hydrostat and is actuated by the most complex musculature known in animals. Because the number of trunk muscles is unclear, we performed dense reconstructions of trunk muscle fascicles, elementary muscle units, from microCT scans of an Asian baby elephant trunk. Muscle architecture changes markedly across the trunk. Trunk tip and finger consist of about 8,000 extraordinarily filigree fascicles. The dexterous finger consists exclusively of microscopic radial fascicles pointing to a role of muscle miniaturization in elephant dexterity. Radial fascicles also predominate (at 82% volume) the remainder of the trunk tip and we wonder if radial muscle fascicles are of particular significance for fine motor control of the dexterous trunk tip. By volume, trunk-shaft muscles comprise one-third of the numerous, small radial muscle fascicles, two-thirds of the three subtypes of large longitudinal fascicles (dorsal longitudinals, ventral outer obliques, and ventral inner obliques), and a small fraction of transversal fascicles. Shaft musculature is laterally, but not radially, symmetric. A predominance of dorsal over ventral radial muscles and of ventral over dorsal longitudinal muscles may result in a larger ability of the shaft to extend dorsally than ventrally and to bend inward rather than outward. There are around 90,000 trunk muscle fascicles. While primate hand control is based on fine control of contraction by the convergence of many motor neurons on a small set of relatively large muscles, evolution of elephant grasping has led to thousands of microscopic fascicles, which probably outnumber facial motor neurons. Y1 - 2023 U6 - https://doi.org/10.1016/j.cub.2023.09.007 VL - 33 SP - 1 EP - 8 ER - TY - JOUR A1 - Kiewisz, Robert A1 - Baum, Daniel A1 - Müller-Reichert, Thomas A1 - Fabig, Gunar T1 - Serial-section electron tomography and quantitative analysis of the microtubule organization in 3D-reconstructed mitotic spindles JF - Bio-protocol Y1 - 2023 U6 - https://doi.org/10.21769/BioProtoc.4849 VL - 13 IS - 20 ER - TY - JOUR A1 - Lindow, Norbert A1 - Brünig, Florian A1 - Dercksen, Vincent J. A1 - Fabig, Gunar A1 - Kiewisz, Robert A1 - Redemann, Stefanie A1 - Müller-Reichert, Thomas A1 - Prohaska, Steffen A1 - Baum, Daniel T1 - Semi-automatic stitching of filamentous structures in image stacks from serial-section electron tomography JF - Journal of Microscopy N2 - We present a software-assisted workflow for the alignment and matching of filamentous structures across a three-dimensional (3D) stack of serial images. This is achieved by combining automatic methods, visual validation, and interactive correction. After the computation of an initial automatic matching, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. Supported by a visual quality assessment of regions that have been already inspected, this allows a trade-off between quality and manual labor. The software tool was developed in an interdisciplinary collaboration between computer scientists and cell biologists to investigate cell division by quantitative 3D analysis of microtubules (MTs) in both mitotic and meiotic spindles. For this, each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. In practice, automatic stitching alone provides only an incomplete solution, because large physical distortions and a low signal-to-noise ratio often cause experimental difficulties. To derive 3D models of spindles despite dealing with imperfect data related to sample preparation and subsequent data collection, semi-automatic validation and correction is required to remove stitching mistakes. However, due to the large number of MTs in spindles (up to 30k) and their resulting dense spatial arrangement, a naive inspection of each MT is too time-consuming. Furthermore, an interactive visualization of the full image stack is hampered by the size of the data (up to 100 GB). Here, we present a specialized, interactive, semi-automatic solution that considers all requirements for large-scale stitching of filamentous structures in serial-section image stacks. To the best of our knowledge, it is the only currently available tool which is able to process data of the type and size presented here. The key to our solution is a careful design of the visualization and interaction tools for each processing step to guarantee real-time response, and an optimized workflow that efficiently guides the user through datasets. The final solution presented here is the result of an iterative process with tight feedback loops between the involved computer scientists and cell biologists. Y1 - 2021 U6 - https://doi.org/10.1111/jmi.13039 VL - 284 IS - 1 SP - 25 EP - 44 ER - TY - GEN A1 - Aboulhassan, Amal A1 - Baum, Daniel A1 - Wodo, Olga A1 - Ganapathysubramanian, Baskar A1 - Amassian, Aram A1 - Hadwiger, Markus T1 - A Novel Framework for Visual Detection and Exploration of Performance Bottlenecks in Organic Photovoltaic Solar Cell Materials N2 - Current characterization methods of the so-called Bulk Heterojunction (BHJ), which is the main material of Organic Photovoltaic (OPV) solar cells, are limited to the analysis of global fabrication parameters. This reduces the efficiency of the BHJ design process, since it misses critical information about the local performance bottlenecks in the morphology of the material. In this paper, we propose a novel framework that fills this gap through visual characterization and exploration of local structure-performance correlations. We also propose a formula that correlates the structural features with the performance bottlenecks. Since research into BHJ materials is highly multidisciplinary, our framework enables a visual feedback strategy that allows scientists to build intuition about the best choices of fabrication parameters. We evaluate the usefulness of our proposed system by obtaining new BHJ characterizations. Furthermore, we show that our approach could substantially reduce the turnaround time. T3 - ZIB-Report - 15-20 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54353 SN - 1438-0064 ER - TY - JOUR A1 - Vohra, Sumit Kumar A1 - Harth, Philipp A1 - Isoe, Yasuko A1 - Bahl, Armin A1 - Fotowat, Haleh A1 - Engert, Florian A1 - Hege, Hans-Christian A1 - Baum, Daniel T1 - A Visual Interface for Exploring Hypotheses about Neural Circuits JF - IEEE Transactions on Visualization and Computer Graphics N2 - One of the fundamental problems in neurobiological research is to understand how neural circuits generate behaviors in response to sensory stimuli. Elucidating such neural circuits requires anatomical and functional information about the neurons that are active during the processing of the sensory information and generation of the respective response, as well as an identification of the connections between these neurons. With modern imaging techniques, both morphological properties of individual neurons as well as functional information related to sensory processing, information integration and behavior can be obtained. Given the resulting information, neurobiologists are faced with the task of identifying the anatomical structures down to individual neurons that are linked to the studied behavior and the processing of the respective sensory stimuli. Here, we present a novel interactive tool that assists neurobiologists in the aforementioned task by allowing them to extract hypothetical neural circuits constrained by anatomical and functional data. Our approach is based on two types of structural data: brain regions that are anatomically or functionally defined, and morphologies of individual neurons. Both types of structural data are interlinked and augmented with additional information. The presented tool allows the expert user to identify neurons using Boolean queries. The interactive formulation of these queries is supported by linked views, using, among other things, two novel 2D abstractions of neural circuits. The approach was validated in two case studies investigating the neural basis of vision-based behavioral responses in zebrafish larvae. Despite this particular application, we believe that the presented tool will be of general interest for exploring hypotheses about neural circuits in other species, genera and taxa. Y1 - 2023 U6 - https://doi.org/10.1109/TVCG.2023.3243668 ER - TY - GEN A1 - Aboulhassan, Amal A1 - Sicat, Ronell A1 - Baum, Daniel A1 - Wodo, Olga A1 - Hadwiger, Markus T1 - Comparative Visual Analysis of Structure-Performance Relations in Complex Bulk-Heterojunction Morphologies N2 - The structure of Bulk-Heterojunction (BHJ) materials, the main component of organic photovoltaic solar cells, is very complex, and the relationship between structure and performance is still largely an open question. Overall, there is a wide spectrum of fabrication configurations resulting in different BHJ morphologies and correspondingly different performances. Current state- of-the-art methods for assessing the performance of BHJ morphologies are either based on global quantification of morphological features or simply on visual inspection of the morphology based on experimental imaging. This makes finding optimal BHJ structures very challenging. Moreover, finding the optimal fabrication parameters to get an optimal structure is still an open question. In this paper, we propose a visual analysis framework to help answer these questions through comparative visualization and parameter space exploration for local morphology features. With our approach, we enable scientists to explore multivariate correlations between local features and performance indicators of BHJ morphologies. Our framework is built on shape-based clustering of local cubical regions of the morphology that we call patches. This enables correlating the features of clusters with intuition-based performance indicators computed from geometrical and topological features of charge paths. T3 - ZIB-Report - 17-16 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-63239 SN - 1438-0064 ER - TY - JOUR A1 - Ziesche, Ralf F. A1 - Arlt, Tobias A1 - Finegan, Donal P. A1 - Heenan, Thomas M.M. A1 - Tengattini, Alessandro A1 - Baum, Daniel A1 - Kardjilov, Nikolay A1 - Markötter, Henning A1 - Manke, Ingo A1 - Kockelmann, Winfried A1 - Brett, Dan J.L. A1 - Shearing, Paul R. T1 - 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique JF - Nature Communications N2 - The temporally and spatially resolved tracking of lithium intercalation and electrode degradation processes are crucial for detecting and understanding performance losses during the operation of lithium-batteries. Here, high-throughput X-ray computed tomography has enabled the identification of mechanical degradation processes in a commercial Li/MnO2 primary battery and the indirect tracking of lithium diffusion; furthermore, complementary neutron computed tomography has identified the direct lithium diffusion process and the electrode wetting by the electrolyte. Virtual electrode unrolling techniques provide a deeper view inside the electrode layers and are used to detect minor fluctuations which are difficult to observe using conventional three dimensional rendering tools. Moreover, the ‘unrolling’ provides a platform for correlating multi-modal image data which is expected to find wider application in battery science and engineering to study diverse effects e.g. electrode degradation or lithium diffusion blocking during battery cycling. Y1 - 2020 U6 - https://doi.org/10.1038/s41467-019-13943-3 VL - 11 SP - 777 ER - TY - JOUR A1 - Hoerth, Rebecca M. A1 - Baum, Daniel A1 - Knötel, David A1 - Prohaska, Steffen A1 - Willie, Bettina M. A1 - Duda, Georg A1 - Hege, Hans-Christian A1 - Fratzl, Peter A1 - Wagermaier, Wolfgang T1 - Registering 2D and 3D Imaging Data of Bone during Healing JF - Connective Tissue Research Y1 - 2015 U6 - https://doi.org/10.3109/03008207.2015.1005210 VL - 56 IS - 2 SP - 133 EP - 143 PB - Taylor & Francis ER - TY - GEN A1 - Vohra, Sumit Kumar A1 - Harth, Philipp A1 - Isoe, Yasuko A1 - Bahl, Armin A1 - Fotowat, Haleh A1 - Engert, Florian A1 - Hege, Hans-Christian A1 - Baum, Daniel T1 - A Visual Interface for Exploring Hypotheses about Neural Circuits N2 - One of the fundamental problems in neurobiological research is to understand how neural circuits generate behaviors in response to sensory stimuli. Elucidating such neural circuits requires anatomical and functional information about the neurons that are active during the processing of the sensory information and generation of the respective response, as well as an identification of the connections between these neurons. With modern imaging techniques, both morphological properties of individual neurons as well as functional information related to sensory processing, information integration and behavior can be obtained. Given the resulting information, neurobiologists are faced with the task of identifying the anatomical structures down to individual neurons that are linked to the studied behavior and the processing of the respective sensory stimuli. Here, we present a novel interactive tool that assists neurobiologists in the aforementioned task by allowing them to extract hypothetical neural circuits constrained by anatomical and functional data. Our approach is based on two types of structural data: brain regions that are anatomically or functionally defined, and morphologies of individual neurons. Both types of structural data are interlinked and augmented with additional information. The presented tool allows the expert user to identify neurons using Boolean queries. The interactive formulation of these queries is supported by linked views, using, among other things, two novel 2D abstractions of neural circuits. The approach was validated in two case studies investigating the neural basis of vision-based behavioral responses in zebrafish larvae. Despite this particular application, we believe that the presented tool will be of general interest for exploring hypotheses about neural circuits in other species, genera and taxa. T3 - ZIB-Report - 23-07 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89932 SN - 1438-0064 ER - TY - JOUR A1 - Mikula, Natalia A1 - Dörffel, Tom A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - An Interactive Approach for Identifying Structure Definitions JF - Computer Graphics Forum N2 - Our ability to grasp and understand complex phenomena is essentially based on recognizing structures and relating these to each other. For example, any meteorological description of a weather condition and explanation of its evolution recurs to meteorological structures, such as convection and circulation structures, cloud fields and rain fronts. All of these are spatiotemporal structures, defined by time-dependent patterns in the underlying fields. Typically, such a structure is defined by a verbal description that corresponds to the more or less uniform, often somewhat vague mental images of the experts. However, a precise, formal definition of the structures or, more generally, concepts is often desirable, e.g., to enable automated data analysis or the development of phenomenological models. Here, we present a systematic approach and an interactive tool to obtain formal definitions of spatiotemporal structures. The tool enables experts to evaluate and compare different structure definitions on the basis of data sets with time-dependent fields that contain the respective structure. Since structure definitions are typically parameterized, an essential part is to identify parameter ranges that lead to desired structures in all time steps. In addition, it is important to allow a quantitative assessment of the resulting structures simultaneously. We demonstrate the use of the tool by applying it to two meteorological examples: finding structure definitions for vortex cores and center lines of temporarily evolving tropical cyclones. Ideally, structure definitions should be objective and applicable to as many data sets as possible. However, finding such definitions, e.g., for the common atmospheric structures in meteorology, can only be a long-term goal. The proposed procedure, together with the presented tool, is just a first systematic approach aiming at facilitating this long and arduous way. Y1 - 2022 U6 - https://doi.org/10.1111/cgf.14543 VL - 41 IS - 3 SP - 321 EP - 332 ER - TY - JOUR A1 - Aboulhassan, Amal A1 - Baum, Daniel A1 - Wodo, Olga A1 - Ganapathysubramanian, Baskar A1 - Amassian, Aram A1 - Hadwiger, Markus T1 - A Novel Framework for Visual Detection and Exploration of Performance Bottlenecks in Organic Photovoltaic Solar Cell Materials JF - Computer Graphics Forum N2 - The current characterization methods of the Bulk Heterojunction (BHJ) - the main material of the new Organic Photovoltaic solar cells - are limited to the analysis of global fabrication parameters. This reduces the efficiency of the BHJ design process, since it misses critical information about the local performance bottlenecks in the morphology of the material. In this paper, we propose a novel framework that fills this gap through visual charac- terization and exploration of local structure-performance correlations. We propose a new formula that correlates the structural features to the performance bottlenecks. Since research into BHJ materials is highly multidisci- plinary, we enable a visual feedback strategy that allows the scientists to build intuition about the best choices of fabrication parameters. We evaluate the usefulness of our proposed system by obtaining new BHJ characteri- zations. We furthermore show that our approach could reduce the previous work-flow time from days to minutes. Y1 - 2015 U6 - https://doi.org/10.1111/cgf.12652 VL - 34 IS - 3 SP - 401 EP - 410 PB - Wiley ER - TY - JOUR A1 - Aboulhassan, Amal A1 - Sicat, Ronell A1 - Baum, Daniel A1 - Wodo, Olga A1 - Hadwiger, Markus T1 - Comparative Visual Analysis of Structure-Performance Relations in Complex Bulk-Heterojunction Morphologies JF - Computer Graphics Forum N2 - The structure of Bulk-Heterojunction (BHJ) materials, the main component of organic photovoltaic solar cells, is very complex, and the relationship between structure and performance is still largely an open question. Overall, there is a wide spectrum of fabrication configurations resulting in different BHJ morphologies and correspondingly different performances. Current state- of-the-art methods for assessing the performance of BHJ morphologies are either based on global quantification of morphological features or simply on visual inspection of the morphology based on experimental imaging. This makes finding optimal BHJ structures very challenging. Moreover, finding the optimal fabrication parameters to get an optimal structure is still an open question. In this paper, we propose a visual analysis framework to help answer these questions through comparative visualization and parameter space exploration for local morphology features. With our approach, we enable scientists to explore multivariate correlations between local features and performance indicators of BHJ morphologies. Our framework is built on shape-based clustering of local cubical regions of the morphology that we call patches. This enables correlating the features of clusters with intuition-based performance indicators computed from geometrical and topological features of charge paths. Y1 - 2017 U6 - https://doi.org/10.1111/cgf.13191 VL - 36 IS - 3 SP - 329 EP - 339 PB - Wiley ER - TY - JOUR A1 - Herter, Felix A1 - Hege, Hans-Christian A1 - Hadwiger, Markus A1 - Lepper, Verena A1 - Baum, Daniel T1 - Thin-Volume Visualization on Curved Domains JF - Computer Graphics Forum N2 - Thin, curved structures occur in many volumetric datasets. Their analysis using classical volume rendering is difficult because parts of such structures can bend away or hide behind occluding elements. This problem cannot be fully compensated by effective navigation alone, because structure-adapted navigation in the volume is cumbersome and only parts of the structure are visible in each view. We solve this problem by rendering a spatially transformed view into the volume so that an unobscured visualization of the entire curved structure is obtained. As a result, simple and intuitive navigation becomes possible. The domain of the spatial transform is defined by a triangle mesh that is topologically equivalent to an open disc and that approximates the structure of interest. The rendering is based on ray-casting in which the rays traverse the original curved sub-volume. In order to carve out volumes of varying thickness, the lengths of the rays as well as the position of the mesh vertices can be easily modified in a view-controlled manner by interactive painting. We describe a prototypical implementation and demonstrate the interactive visual inspection of complex structures from digital humanities, biology, medicine, and materials science. Displaying the structure as a whole enables simple inspection of interesting substructures in their original spatial context. Overall, we show that transformed views utilizing ray-casting-based volume rendering supported by guiding surface meshes and supplemented by local, interactive modifications of ray lengths and vertex positions, represent a simple but versatile approach to effectively visualize thin, curved structures in volumetric data. Y1 - 2021 U6 - https://doi.org/10.1111/cgf.14296 VL - 40 IS - 3 SP - 147 EP - 157 PB - Wiley-Blackwell Publishing Ltd. CY - United Kingdom ER - TY - CHAP A1 - Harth, Philipp A1 - Bast, Arco A1 - Troidl, Jakob A1 - Meulemeester, Bjorge A1 - Pfister, Hanspeter A1 - Beyer, Johanna A1 - Oberlaender, Marcel A1 - Hege, Hans-Christian A1 - Baum, Daniel T1 - Rapid Prototyping for Coordinated Views of Multi-scale Spatial and Abstract Data: A Grammar-based Approach T2 - Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM) N2 - Visualization grammars are gaining popularity as they allow visualization specialists and experienced users to quickly create static and interactive views. Existing grammars, however, mostly focus on abstract views, ignoring three-dimensional (3D) views, which are very important in fields such as natural sciences. We propose a generalized interaction grammar for the problem of coordinating heterogeneous view types, such as standard charts (e.g., based on Vega-Lite) and 3D anatomical views. An important aspect of our web-based framework is that user interactions with data items at various levels of detail can be systematically integrated and used to control the overall layout of the application workspace. With the help of a concise JSON-based specification of the intended workflow, we can handle complex interactive visual analysis scenarios. This enables rapid prototyping and iterative refinement of the visual analysis tool in collaboration with domain experts. We illustrate the usefulness of our framework in two real-world case studies from the field of neuroscience. Since the logic of the presented grammar-based approach for handling interactions between heterogeneous web-based views is free of any application specifics, it can also serve as a template for applications beyond biological research. Y1 - 2023 U6 - https://doi.org/10.2312/vcbm.20231218 ER - TY - CHAP A1 - Paskin, Martha A1 - Dean, Mason A1 - Baum, Daniel A1 - von Tycowicz, Christoph T1 - A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks T2 - Computer Vision -- ECCV 2022 N2 - 3D shapes provide substantially more information than 2D images. However, the acquisition of 3D shapes is sometimes very difficult or even impossible in comparison with acquiring 2D images, making it necessary to derive the 3D shape from 2D images. Although this is, in general, a mathematically ill-posed problem, it might be solved by constraining the problem formulation using prior information. Here, we present a new approach based on Kendall’s shape space to reconstruct 3D shapes from single monocular 2D images. The work is motivated by an application to study the feeding behavior of the basking shark, an endangered species whose massive size and mobility render 3D shape data nearly impossible to obtain, hampering understanding of their feeding behaviors and ecology. 2D images of these animals in feeding position, however, are readily available. We compare our approach with state-of-the-art shape-based approaches both on human stick models and on shark head skeletons. Using a small set of training shapes, we show that the Kendall shape space approach is substantially more robust than previous methods and always results in plausible shapes. This is essential for the motivating application in which specimens are rare and therefore only few training shapes are available. Y1 - 2022 U6 - https://doi.org/10.1007/978-3-031-20086-1_21 SP - 363 EP - 379 PB - Springer Nature Switzerland ER - TY - GEN A1 - Paskin, Martha A1 - Baum, Daniel A1 - Dean, Mason N. A1 - von Tycowicz, Christoph T1 - A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks -- Source Code and Data N2 - Source code and novel dataset of basking shark head skeletons facilitating the reproduction of the results presented in 'A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks' - ECCV 2022. Y1 - 2022 U6 - https://doi.org/10.12752/8730 ER -