TY - JOUR A1 - Kofler, Andreas A1 - Wald, Christian A1 - Kolbitsch, Christoph A1 - von Tycowicz, Christoph A1 - Ambellan, Felix T1 - Joint Reconstruction and Segmentation in Undersampled 3D Knee MRI combining Shape Knowledge and Deep Learning JF - Physics in Medicine and Biology N2 - Task-adapted image reconstruction methods using end-to-end trainable neural networks (NNs) have been proposed to optimize reconstruction for subsequent processing tasks, such as segmentation. However, their training typically requires considerable hardware resources and thus, only relatively simple building blocks, e.g. U-Nets, are typically used, which, albeit powerful, do not integrate model-specific knowledge. In this work, we extend an end-to-end trainable task-adapted image reconstruction method for a clinically realistic reconstruction and segmentation problem of bone and cartilage in 3D knee MRI by incorporating statistical shape models (SSMs). The SSMs model the prior information and help to regularize the segmentation maps as a final post-processing step. We compare the proposed method to a state-of-the-art (SOTA) simultaneous multitask learning approach for image reconstruction and segmentation (MTL) and to a complex SSMs-informed segmentation pipeline (SIS). Our experiments show that the combination of joint end-to-end training and SSMs to further regularize the segmentation maps obtained by MTL highly improves the results, especially in terms of mean and maximal surface errors. In particular, we achieve the segmentation quality of SIS and, at the same time, a substantial model reduction that yields a five-fold decimation in model parameters and a computational speedup of an order of magnitude. Remarkably, even for undersampling factors of up to R=8, the obtained segmentation maps are of comparable quality to those obtained by SIS from ground-truth images. Y1 - 2024 U6 - https://doi.org/10.1088/1361-6560/ad3797 ER - TY - JOUR A1 - von Tycowicz, Christoph A1 - Ambellan, Felix A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - An Efficient Riemannian Statistical Shape Model using Differential Coordinates JF - Medical Image Analysis N2 - We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidean structure. A key advantage of our framework is that statistics in a manifold shape space becomes numerically tractable improving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidean approach in terms of shape-based classification of morphological disorders. Y1 - 2018 U6 - https://doi.org/10.1016/j.media.2017.09.004 VL - 43 IS - 1 SP - 1 EP - 9 ER - TY - JOUR A1 - Nava-Yazdani, Esfandiar A1 - Hege, Hans-Christian A1 - Sullivan, T. J. A1 - von Tycowicz, Christoph T1 - Geodesic Analysis in Kendall's Shape Space with Epidemiological Applications JF - Journal of Mathematical Imaging and Vision N2 - We analytically determine Jacobi fields and parallel transports and compute geodesic regression in Kendall’s shape space. Using the derived expressions, we can fully leverage the geometry via Riemannian optimization and thereby reduce the computational expense by several orders of magnitude over common, nonlinear constrained approaches. The methodology is demonstrated by performing a longitudinal statistical analysis of epidemiological shape data. As an example application we have chosen 3D shapes of knee bones, reconstructed from image data of the Osteoarthritis Initiative (OAI). Comparing subject groups with incident and developing osteoarthritis versus normal controls, we find clear differences in the temporal development of femur shapes. This paves the way for early prediction of incident knee osteoarthritis, using geometry data alone. Y1 - 2020 U6 - https://doi.org/10.1007/s10851-020-00945-w VL - 62 IS - 4 SP - 549 EP - 559 ER - TY - JOUR A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - Rigid Motion Invariant Statistical Shape Modeling based on Discrete Fundamental Forms JF - Medical Image Analysis N2 - We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. Additionally, as planar configurations form a submanifold in shape space, our representation allows for effective estimation of quasi-isometric surfaces flattenings. We evaluate the performance of our model w.r.t. shape-based classification of hippocampus and femur malformations due to Alzheimer's disease and osteoarthritis, respectively. In particular, we achieve state-of-the-art accuracies outperforming the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing biological shape variability, we carry out an analysis of specificity and generalization ability. Y1 - 2021 U6 - https://doi.org/10.1016/j.media.2021.102178 VL - 73 ER - TY - JOUR A1 - Sipiran, Ivan A1 - Lazo, Patrick A1 - Lopez, Cristian A1 - Bagewadi, Nihar A1 - Bustos, Benjamin A1 - Dao, Hieu A1 - Gangisetty, Shankar A1 - Hanik, Martin A1 - Ho-Thi, Ngoc-Phuong A1 - Holenderski, Mike A1 - Jarnikov, Dmitri A1 - Labrada, Arniel A1 - Lengauer, Stefan A1 - Licandro, Roxane A1 - Nguyen, Dinh-Huan A1 - Nguyen-Ho, Thang-Long A1 - Pérez Rey, Luis A. A1 - Pham, Bang-Dang A1 - Pham, Minh-Khoi A1 - Preiner, Reinhold A1 - Schreck, Tobias A1 - Trinh, Quoc-Huy A1 - Tonnaer, Loek A1 - von Tycowicz, Christoph A1 - Vu-Le, The-Anh T1 - SHREC 2021: Retrieval of Cultural Heritage Objects JF - Computers and Graphics N2 - This paper presents the methods and results of the SHREC’21 contest on a dataset of cultural heritage (CH) objects. We present a dataset of 938 scanned models that have varied geometry and artistic styles. For the competition, we propose two challenges: the retrieval-by-shape challenge and the retrieval-by-culture challenge. The former aims at evaluating the ability of retrieval methods to discriminate cultural heritage objects by overall shape. The latter focuses on assessing the effectiveness of retrieving objects from the same culture. Both challenges constitute a suitable scenario to evaluate modern shape retrieval methods in a CH domain. Ten groups participated in the contest: thirty runs were submitted for the retrieval-by-shape task, and twenty-six runs were submitted for the retrieval-by-culture challenge. The results show a predominance of learning methods on image-based multi-view representations to characterize 3D objects. Nevertheless, the problem presented in our challenges is far from being solved. We also identify the potential paths for further improvements and give insights into the future directions of research. Y1 - 2021 U6 - https://doi.org/10.1016/j.cag.2021.07.010 VL - 100 SP - 1 EP - 20 ER - TY - JOUR A1 - Moewis, Philippe A1 - Kaiser, René A1 - Trepczynski, Adam A1 - von Tycowicz, Christoph A1 - Krahl, Leonie A1 - Ilg, Ansgar A1 - Holz, Johannes A1 - Duda, Georg T1 - Patient specific resurfacing implant knee surgery in subjects with early osteoarthritis results in medial pivot and lateral femoral rollback during flexion: A retrospective pilot study JF - Knee Surgery, Sports Traumatology, Arthroscopy N2 - Purpose. Metallic resurfacing implants have been developed for the treatment of early, focal, small, condylar and trochlear osteoarthritis (OA) lesions. They represent an option for patients who are either too young to fulfill the criteria for total knee arthroplasty (TKA) or too old for biological treatment. Although relevant clinical evidence has been collected for different resurfacing types, the in vivo post-operative knee kinematics remains unknown. The present study aims to measure and analyse the knee joint kinematics in subjects with patient-specific Episealer implants Methods. Retrospective study design. Fluoroscopic analyses during high flexion activities (unloaded flexion-extension and loaded lunge) were conducted at >12 months post-surgery in ten Episealer knees. The post-operative knee joint kinematics was compared to equally assessed kinematic from ten healthy knees, twenty G-Curve TKA knees and 10 J-Curve knees. Pre- and postoperative clinical data of the Episealer knees were collected using a visual analog scale (VAS), the EQ 5d Health Questionnaire and the Knee Injury and Osteoarthritis Outcome Score (KOOS). Results. During unloaded flexion-extension and loaded lunge, the medial condyle in the Episealer knees remained relative stationary, indicating a medial pivot, while the lateral condyle translated consistently towards posterior. Similarly, reduced movement of the medial condyle and posterior translation of the lateral condyle was also observed in the healthy knees, although to a lesser extent. In contrast, the kinematics of both TKA cohorts during unloaded flexion-extension showed a tendency towards anterior displacement in the medial compartment, which led to significant differences in comparison with the Episealer knees. In the lateral compartment, a certain degree of femoral rollback was noted in the G-Curve TKA cohort. Improved scores were observed in the Episealer subjects between the preoperative and 1-year postoperative follow-up. Conclusion. At 12 months postsurgery, a physiological-like knee kinematics was observed in the group of patient-specific reconstructed chondral/osteochondral lesions by means of a resurfacing Episealer implant strategy. Considering that these patients are physically active and do not fulfill the criteria for TKA, the group is hard to be compared to TKA patients which usually are less active and more challenging. Nevertheless, the comparison to either healthy knee kinematics as well as to TKA reconstructed knees with different implant designs showed a more physiological-like kinematics in the resurfacing implants that seems more appropriate for such a patient group. Despite positive results, careful clinical follow-up of treated patients is recommended for the long-term OA progression. Further investigations need to be encouraged not only in larger patient groups but also in a prospective manner to assess the pre- to postoperative kinematic changes. Y1 - 2021 U6 - https://doi.org/10.1007/s00167-021-06749-8 ER - TY - JOUR A1 - Nava-Yazdani, Esfandiar A1 - Hege, Hans-Christian A1 - von Tycowicz, Christoph T1 - A Hierarchical Geodesic Model for Longitudinal Analysis on Manifolds JF - Journal of Mathematical Imaging and Vision N2 - In many applications, geodesic hierarchical models are adequate for the study of temporal observations. We employ such a model derived for manifold-valued data to Kendall's shape space. In particular, instead of the Sasaki metric, we adapt a functional-based metric, which increases the computational efficiency and does not require the implementation of the curvature tensor. We propose the corresponding variational time discretization of geodesics and employ the approach for longitudinal analysis of 2D rat skulls shapes as well as 3D shapes derived from an imaging study on osteoarthritis. Particularly, we perform hypothesis test and estimate the mean trends. Y1 - 2022 U6 - https://doi.org/10.1007/s10851-022-01079-x VL - 64 IS - 4 SP - 395 EP - 407 ER - TY - JOUR A1 - Hanik, Martin A1 - Ducke, Benjamin A1 - Hege, Hans-Christian A1 - Fless, Friederike A1 - von Tycowicz, Christoph T1 - Intrinsic shape analysis in archaeology: A case study on ancient sundials JF - Journal on Computing and Cultural Heritage N2 - The fact that the physical shapes of man-made objects are subject to overlapping influences—such as technological, economic, geographic, and stylistic progressions—holds great information potential. On the other hand, it is also a major analytical challenge to uncover these overlapping trends and to disentagle them in an unbiased way. This paper explores a novel mathematical approach to extract archaeological insights from ensembles of similar artifact shapes. We show that by considering all shape information in a find collection, it is possible to identify shape patterns that would be difficult to discern by considering the artifacts individually or by classifying shapes into predefined archaeological types and analyzing the associated distinguishing characteristics. Recently, series of high-resolution digital representations of artifacts have become available. Such data sets enable the application of extremely sensitive and flexible methods of shape analysis. We explore this potential on a set of 3D models of ancient Greek and Roman sundials, with the aim of providing alternatives to the traditional archaeological method of “trend extraction by ordination” (typology). In the proposed approach, each 3D shape is represented as a point in a shape space—a high-dimensional, curved, non-Euclidean space. Proper consideration of its mathematical properties reduces bias in data analysis and thus improves analytical power. By performing regression in shape space, we find that for Roman sundials, the bend of the shadow-receiving surface of the sundials changes with the latitude of the location. This suggests that, apart from the inscribed hour lines, also a sundial’s shape was adjusted to the place of installation. As an example of more advanced inference, we use the identified trend to infer the latitude at which a sundial, whose location of installation is unknown, was placed. We also derive a novel method for differentiated morphological trend assertion, building upon and extending the theory of geometric statistics and shape analysis. Specifically, we present a regression-based method for statistical normalization of shapes that serves as a means of disentangling parameter-dependent effects (trends) and unexplained variability. In addition, we show that this approach is robust to noise in the digital reconstructions of the artifact shapes. Y1 - 2023 U6 - https://doi.org/10.1145/3606698 VL - 16 IS - 4 SP - 1 EP - 26 ER - TY - JOUR A1 - Oehme, Stephan A1 - Moewis, Philippe A1 - Boeth, Heide A1 - Bartek, Benjamin A1 - Lippert, Annika A1 - von Tycowicz, Christoph A1 - Ehrig, Rainald A1 - Duda, Georg A1 - Jung, Tobias T1 - PCL insufficient patients with increased translational and rotational passive knee joint laxity have no increased range of anterior–posterior and rotational tibiofemoral motion during level walking JF - Scientific Reports Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-17328-3 VL - 12 IS - 1 SP - 1 EP - 11 ER - TY - JOUR A1 - Hanik, Martin A1 - Hege, Hans-Christian A1 - von Tycowicz, Christoph T1 - Bi-invariant Dissimilarity Measures for Sample Distributions in Lie Groups JF - SIAM Journal on Mathematics of Data Science N2 - Data sets sampled in Lie groups are widespread, and as with multivariate data, it is important for many applications to assess the differences between the sets in terms of their distributions. Indices for this task are usually derived by considering the Lie group as a Riemannian manifold. Then, however, compatibility with the group operation is guaranteed only if a bi-invariant metric exists, which is not the case for most non-compact and non-commutative groups. We show here that if one considers an affine connection structure instead, one obtains bi-invariant generalizations of well-known dissimilarity measures: a Hotelling $T^2$ statistic, Bhattacharyya distance and Hellinger distance. Each of the dissimilarity measures matches its multivariate counterpart for Euclidean data and is translation-invariant, so that biases, e.g., through an arbitrary choice of reference, are avoided. We further derive non-parametric two-sample tests that are bi-invariant and consistent. We demonstrate the potential of these dissimilarity measures by performing group tests on data of knee configurations and epidemiological shape data. Significant differences are revealed in both cases. Y1 - 2022 U6 - https://doi.org/10.1137/21M1410373 VL - 4 IS - 4 SP - 1223 EP - 1249 ER -