TY - JOUR A1 - Zhang, Wei A1 - Schütte, Christof T1 - Understanding recent deep-learning techniques for identifying collective variables of molecular dynamics BT - Special Issue: 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) JF - Proceedings in Applied Mathematics and Mechanics N2 - High-dimensional metastable molecular dynamics (MD) can often be characterised by a few features of the system, that is, collective variables (CVs). Thanks to the rapid advance in the area of machine learning and deep learning, various deep learning-based CV identification techniques have been developed in recent years, allowing accurate modelling and efficient simulation of complex molecular systems. In this paper, we look at two different categories of deep learning-based approaches for finding CVs, either by computing leading eigenfunctions of transfer operator associated to the underlying dynamics, or by learning an autoencoder via minimisation of reconstruction error. We present a concise overview of the mathematics behind these two approaches and conduct a comparative numerical study of these two approaches on illustrative examples. Y1 - 2023 U6 - https://doi.org/10.1002/pamm.202300189 VL - 23 IS - 4 ER - TY - JOUR A1 - Thies, Arne A1 - Sunkara, Vikram A1 - Ray, Sourav A1 - Wulkow, Hanna A1 - Celik, M. Özgür A1 - Yergöz, Fatih A1 - Schütte, Christof A1 - Stein, Christoph A1 - Weber, Marcus A1 - Winkelmann, Stefanie T1 - Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design JF - Scientific Reports N2 - We previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. The design process of NFEPP was based on mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands, recognizing that GPCRs function differently under pathological versus healthy conditions. We now present an additional and novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels and their dependence on parameters of inflamed and healthy tissue (pH, radicals). The model is validated against in vitro experimental data for the ligands NFEPP and fentanyl at different pH values and radical concentrations. We observe markedly reduced binding affinity and calcium channel inhibition for NFEPP at normal pH compared to lower pH, in contrast to the effect of fentanyl. For increasing radical concentrations, we find enhanced constitutive G-protein activation but reduced ligand binding affinity. Assessing the different effects, the results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account. Y1 - 2023 U6 - https://doi.org/10.1038/s41598-023-27699-w VL - 13 IS - 607 ER - TY - JOUR A1 - Secker, Christopher A1 - Fackeldey, Konstantin A1 - Weber, Marcus A1 - Ray, Sourav A1 - Gorgulla, Christoph A1 - Schütte, Christof T1 - Novel multi-objective affinity approach allows to identify pH-specific μ-opioid receptor agonists JF - Journal of Cheminformatics N2 - Opioids are essential pharmaceuticals due to their analgesic properties, however, lethal side effects, addiction, and opioid tolerance are extremely challenging. The development of novel molecules targeting the μ-opioid receptor (MOR) in inflamed, but not in healthy tissue, could significantly reduce these unwanted effects. Finding such novel molecules can be achieved by maximizing the binding affinity to the MOR at acidic pH while minimizing it at neutral pH, thus combining two conflicting objectives. Here, this multi-objective optimal affinity approach is presented, together with a virtual drug discovery pipeline for its practical implementation. When applied to finding pH-specific drug candidates, it combines protonation state-dependent structure and ligand preparation with high-throughput virtual screening. We employ this pipeline to characterize a set of MOR agonists identifying a morphine-like opioid derivative with higher predicted binding affinities to the MOR at low pH compared to neutral pH. Our results also confirm existing experimental evidence that NFEPP, a previously described fentanyl derivative with reduced side effects, and recently reported β-fluorofentanyls and -morphines show an increased specificity for the MOR at acidic pH when compared to fentanyl and morphine. We further applied our approach to screen a >50K ligand library identifying novel molecules with pH-specific predicted binding affinities to the MOR. The presented differential docking pipeline can be applied to perform multi-objective affinity optimization to identify safer and more specific drug candidates at large scale. Y1 - 2023 U6 - https://doi.org/10.1186/s13321-023-00746-4 VL - 15 ER - TY - JOUR A1 - Schütte, Christof A1 - Klus, Stefan A1 - Hartmann, Carsten T1 - Overcoming the Timescale Barrier in Molecular Dynamics: Transfer Operators, Variational Principles, and Machine Learning JF - Acta Numerica N2 - One of the main challenges in molecular dynamics is overcoming the ‘timescale barrier’: in many realistic molecular systems, biologically important rare transitions occur on timescales that are not accessible to direct numerical simulation, even on the largest or specifically dedicated supercomputers. This article discusses how to circumvent the timescale barrier by a collection of transfer operator-based techniques that have emerged from dynamical systems theory, numerical mathematics and machine learning over the last two decades. We will focus on how transfer operators can be used to approximate the dynamical behaviour on long timescales, review the introduction of this approach into molecular dynamics, and outline the respective theory, as well as the algorithmic development, from the early numerics-based methods, via variational reformulations, to modern data-based techniques utilizing and improving concepts from machine learning. Furthermore, its relation to rare event simulation techniques will be explained, revealing a broad equivalence of variational principles for long-time quantities in molecular dynamics. The article will mainly take a mathematical perspective and will leave the application to real-world molecular systems to the more than 1000 research articles already written on this subject. Y1 - 2023 U6 - https://doi.org/10.1017/S0962492923000016 VL - 32 SP - 517 EP - 673 ER - TY - JOUR A1 - Ribera Borrell, Enric A1 - Quer, Jannes A1 - Richter, Lorenz A1 - Schütte, Christof T1 - Improving control based importance sampling strategies for metastable diffusions via adapted metadynamics JF - SIAM Journal on Scientific Computing (SISC) N2 - Sampling rare events in metastable dynamical systems is often a computationally expensive task and one needs to resort to enhanced sampling methods such as importance sampling. Since we can formulate the problem of finding optimal importance sampling controls as a stochastic optimization problem, this then brings additional numerical challenges and the convergence of corresponding algorithms might as well suffer from metastabilty. In this article we address this issue by combining systematic control approaches with the heuristic adaptive metadynamics method. Crucially, we approximate the importance sampling control by a neural network, which makes the algorithm in principle feasible for high dimensional applications. We can numerically demonstrate in relevant metastable problems that our algorithm is more effective than previous attempts and that only the combination of the two approaches leads to a satisfying convergence and therefore to an efficient sampling in certain metastable settings. KW - importance sampling KW - stochastic optimal control KW - rare event simulation KW - metastability KW - neural networks KW - metadynamics Y1 - 2023 U6 - https://doi.org/10.1137/22M1503464 SP - S298 EP - S323 ER - TY - JOUR A1 - Plock, Matthias A1 - Hammerschmidt, Martin A1 - Burger, Sven A1 - Schneider, Philipp-Immanuel A1 - Schütte, Christof T1 - Impact Study of Numerical Discretization Accuracy on Parameter Reconstructions and Model Parameter Distributions JF - Metrologia N2 - In optical nano metrology numerical models are used widely for parameter reconstructions. Using the Bayesian target vector optimization method we fit a finite element numerical model to a Grazing Incidence x-ray fluorescence data set in order to obtain the geometrical parameters of a nano structured line grating. Gaussian process, stochastic machine learning surrogate models, were trained during the reconstruction and afterwards sampled with a Markov chain Monte Carlo sampler to determine the distribution of the reconstructed model parameters. The numerical discretization parameters of the used finite element model impact the numerical discretization error of the forward model. We investigated the impact of the polynomial order of the finite element ansatz functions on the reconstructed parameters as well as on the model parameter distributions. We showed that such a convergence study allows to determine numerical parameters which allows for efficient and accurate reconstruction results. Y1 - 2023 U6 - https://doi.org/10.1088/1681-7575/ace4cd VL - 60 SP - 054001 ER - TY - JOUR A1 - Montefusco, Alberto A1 - Schütte, Christof A1 - Winkelmann, Stefanie T1 - A route to the hydrodynamic limit of a reaction-diffusion master equation using gradient structures JF - SIAM Journal on Applied Mathematics N2 - The reaction-diffusion master equation (RDME) is a lattice-based stochastic model for spatially resolved cellular processes. It is often interpreted as an approximation to spatially continuous reaction-diffusion models, which, in the limit of an infinitely large population, may be described by means of reaction-diffusion partial differential equations. Analyzing and understanding the relation between different mathematical models for reaction-diffusion dynamics is a research topic of steady interest. In this work, we explore a route to the hydrodynamic limit of the RDME which uses gradient structures. Specifically, we elaborate on a method introduced in [J. Maas and A. Mielke, J. Stat. Phys., 181 (2020), pp. 2257–2303] in the context of well-mixed reaction networks by showing that, once it is complemented with an appropriate limit procedure, it can be applied to spatially extended systems with diffusion. Under the assumption of detailed balance, we write down a gradient structure for the RDME and use the method in order to produce a gradient structure for its hydrodynamic limit, namely, for the corresponding RDPDE. Y1 - 2023 U6 - https://doi.org/10.1137/22M1488831 VL - 83 IS - 2 SP - 837 EP - 861 ER - TY - GEN A1 - Helfmann, Luzie A1 - Djurdjevac Conrad, Natasa A1 - Lorenz-Spreen, Philipp A1 - Schütte, Christof T1 - Supplementary code for the paper Modelling opinion dynamics under the impact of influencer and media strategies N2 - This repository contains the Julia code accompanying the paper "Modelling opinion dynamics under the impact of influencer and media strategies", Scientific Reports, Vol.13, p. 19375, 2023. Y1 - 2023 U6 - https://doi.org/10.12752/9267 ER - TY - JOUR A1 - Helfmann, Luzie A1 - Conrad, Natasa Djurdjevac A1 - Lorenz-Spreen, Philipp A1 - Schütte, Christof T1 - Modelling opinion dynamics under the impact of influencer and media strategies JF - Scientific Reports N2 - Digital communication has made the public discourse considerably more complex, and new actors and strategies have emerged as a result of this seismic shift. Aside from the often-studied interactions among individuals during opinion formation, which have been facilitated on a large scale by social media platforms, the changing role of traditional media and the emerging role of "influencers" are not well understood, and the implications of their engagement strategies arising from the incentive structure of the attention economy even less so. Here we propose a novel opinion dynamics model that accounts for these different roles, namely that media and influencers change their own positions on slower time scales than individuals, while influencers dynamically gain and lose followers. Numerical simulations show the importance of their relative influence in creating qualitatively different opinion formation dynamics: with influencers, fragmented but short-lived clusters emerge, which are then counteracted by more stable media positions. Mean-field approximations by partial differential equations reproduce this dynamic. Based on the mean-field model, we study how strategies of influencers to gain more followers can influence the overall opinion distribution. We show that moving towards extreme positions can be a beneficial strategy for influencers to gain followers. Finally, we demonstrate that optimal control strategies allow other influencers or media to counteract such attempts and prevent further fragmentation of the opinion landscape. Our modelling framework contributes to better understanding the different roles and strategies in the increasingly complex information ecosystem and their impact on public opinion formation. Y1 - 2023 U6 - https://doi.org/10.1038/s41598-023-46187-9 VL - 13 SP - 19375 ER - TY - JOUR A1 - Gaskin, Thomas A1 - Conrad, Tim A1 - Pavliotis, Grigorios A. A1 - Schütte, Christof T1 - Neural parameter calibration and uncertainty quantification for epidemic forecasting JF - PLOS ONE N2 - The recent COVID-19 pandemic has thrown the importance of accurately forecasting contagion dynamics and learning infection parameters into sharp focus. At the same time, effective policy-making requires knowledge of the uncertainty on such predictions, in order, for instance, to be able to ready hospitals and intensive care units for a worst-case scenario without needlessly wasting resources. In this work, we apply a novel and powerful computational method to the problem of learning probability densities on contagion parameters and providing uncertainty quantification for pandemic projections. Using a neural network, we calibrate an ODE model to data of the spread of COVID-19 in Berlin in 2020, achieving both a significantly more accurate calibration and prediction than Markov-Chain Monte Carlo (MCMC)-based sampling schemes. The uncertainties on our predictions provide meaningful confidence intervals e.g. on infection figures and hospitalisation rates, while training and running the neural scheme takes minutes where MCMC takes hours. We show convergence of our method to the true posterior on a simplified SIR model of epidemics, and also demonstrate our method's learning capabilities on a reduced dataset, where a complex model is learned from a small number of compartments for which data is available. Y1 - 2023 ER -