TY - BOOK A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - Stochastic Dynamics in Computational Biology T3 - Frontiers in Applied Dynamical Systems: Reviews and Tutorials Y1 - 2020 SN - 978-3-030-62386-9 U6 - https://doi.org/10.1007/978-3-030-62387-6 VL - 8 PB - Springer International Publishing ER - TY - GEN A1 - Sunkara, Vikram A1 - Raharinirina, N. Alexia A1 - Peppert, Felix A1 - von Kleist, Max A1 - Schütte, Christof T1 - Inferring Gene Regulatory Networks from Single Cell RNA-seq Temporal Snapshot Data Requires Higher Order Moments N2 - Due to the increase in accessibility and robustness of sequencing technology, single cell RNA-seq (scRNA-seq) data has become abundant. The technology has made significant contributions to discovering novel phenotypes and heterogeneities of cells. Recently, there has been a push for using single-- or multiple scRNA-seq snapshots to infer the underlying gene regulatory networks (GRNs) steering the cells' biological functions. To date, this aspiration remains unrealised. In this paper, we took a bottom-up approach and curated a stochastic two gene interaction model capturing the dynamics of a complete system of genes, mRNAs, and proteins. In the model, the regulation was placed upstream from the mRNA on the gene level. We then inferred the underlying regulatory interactions from only the observation of the mRNA population through~time. We could detect signatures of the regulation by combining information of the mean, covariance, and the skewness of the mRNA counts through time. We also saw that reordering the observations using pseudo-time did not conserve the covariance and skewness of the true time course. The underlying GRN could be captured consistently when we fitted the moments up to degree three; however, this required a computationally expensive non-linear least squares minimisation solver. There are still major numerical challenges to overcome for inference of GRNs from scRNA-seq data. These challenges entail finding informative summary statistics of the data which capture the critical regulatory information. Furthermore, the statistics have to evolve linearly or piece-wise linearly through time to achieve computational feasibility and scalability. T3 - ZIB-Report - 20-25 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-79664 SN - 1438-0064 ER - TY - JOUR A1 - Ray, Sourav A1 - Sunkara, Vikram A1 - Schütte, Christof A1 - Weber, Marcus T1 - How to calculate pH-dependent binding rates for receptor-ligand systems based on thermodynamic simulations with different binding motifs JF - Molecular Simulation N2 - Molecular simulations of ligand–receptor interactions are a computational challenge, especially when their association- (‘on’-rate) and dissociation- (‘off’-rate) mechanisms are working on vastly differing timescales. One way of tackling this multiscale problem is to compute the free-energy landscapes, where molecular dynamics (MD) trajectories are used to only produce certain statistical ensembles. The approach allows for deriving the transition rates between energy states as a function of the height of the activation-energy barriers. In this article, we derive the association rates of the opioids fentanyl and N-(3-fluoro-1-phenethylpiperidin-4-yl)-N-phenyl propionamide (NFEPP) in a μ-opioid receptor by combining the free-energy landscape approach with the square-root-approximation method (SQRA), which is a particularly robust version of Markov modelling. The novelty of this work is that we derive the association rates as a function of the pH level using only an ensemble of MD simulations. We also verify our MD-derived insights by reproducing the in vitro study performed by the Stein Lab. Y1 - 2020 U6 - https://doi.org/10.1080/08927022.2020.1839660 VL - 46 IS - 18 SP - 1443 EP - 1452 PB - Taylor and Francis ER - TY - GEN A1 - Ray, Sourav A1 - Sunkara, Vikram A1 - Schütte, Christof A1 - Weber, Marcus T1 - How to calculate pH-dependent binding rates for receptor-ligand systems based on thermodynamic simulations with different binding motifs N2 - Molecular simulations of ligand-receptor interactions are a computational challenge, especially when their association- (``on''-rate) and dissociation- (``off''-rate) mechanisms are working on vastly differing timescales. In addition, the timescale of the simulations themselves is, in practice, orders of magnitudes smaller than that of the mechanisms; which further adds to the complexity of observing these mechanisms, and of drawing meaningful and significant biological insights from the simulation. One way of tackling this multiscale problem is to compute the free-energy landscapes, where molecular dynamics (MD) trajectories are used to only produce certain statistical ensembles. The approach allows for deriving the transition rates between energy states as a function of the height of the activation-energy barriers. In this article, we derive the association rates of the opioids fentanyl and N-(3-fluoro-1-phenethylpiperidin-4-yl)- N-phenyl propionamide (NFEPP) in a $\mu$-opioid receptor by combining the free-energy landscape approach with the square-root-approximation method (SQRA), which is a particularly robust version of Markov modelling. The novelty of this work is that we derive the association rates as a function of the pH level using only an ensemble of MD simulations. We also verify our MD-derived insights by reproducing the in vitro study performed by the Stein Lab, who investigated the influence of pH on the inhibitory constant of fentanyl and NFEPP (Spahn et al. 2017). MD simulations are far more accessible and cost-effective than in vitro and in vivo studies. Especially in the context of the current opioid crisis, MD simulations can aid in unravelling molecular functionality and assist in clinical decision-making; the approaches presented in this paper are a pertinent step forward in this direction. T3 - ZIB-Report - 20-18 KW - Opioid, Ligand-Receptor Interaction, Binding Kinetics, Molecular Dynamics, Metadynamics, SQRA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78437 SN - 1438-0064 ER - TY - JOUR A1 - Möller, Jan A1 - Isbilir, Ali A1 - Sungkaworn, Titiwat A1 - Osberg, Brenda A1 - Karathanasis, Christos A1 - Sunkara, Vikram A1 - Grushevsky, Eugene O A1 - Bock, Andreas A1 - Annibale, Paolo A1 - Heilemann, Mike A1 - Schütte, Christof A1 - Lohse, Martin J. T1 - Single molecule mu-opioid receptor membrane-dynamics reveal agonist-specific dimer formation with super-resolved precision JF - Nature Chemical Biology Y1 - 2020 U6 - https://doi.org/10.1038/s41589-020-0566-1 VL - 16 SP - 946 EP - 954 ER - TY - GEN A1 - Mollenhauer, Mattes A1 - Schuster, Ingmar A1 - Klus, Stefan A1 - Schütte, Christof ED - Junge, Oliver ED - Schütze, O. ED - Froyland, Gary ED - Ober-Blobaum, S. ED - Padberg-Gehle, K. T1 - Singular Value Decomposition of Operators on Reproducing Kernel Hilbert Spaces T2 - Advances om Dynamics, Optimization and Computation. Series: Studies in Systems, Decision and Control. A volume dedicated to Michael Dellnitz on his 60th birthday Y1 - 2020 SN - 978-3-030-51264-4 U6 - https://doi.org/10.1007/978-3-030-51264-4_5 VL - 304 SP - 109 EP - 131 PB - Springer International ER - TY - JOUR A1 - Klus, Stefan A1 - Nüske, Feliks A1 - Peitz, Sebastian A1 - Niemann, Jan-Hendrik A1 - Clementi, Cecilia A1 - Schütte, Christof T1 - Data-driven approximation of the Koopman generator: Model reduction, system identification, and control JF - Physica D: Nonlinear Phenomena Y1 - 2020 U6 - https://doi.org/10.1016/j.physd.2020.132416 VL - 406 ER - TY - JOUR A1 - Helfmann, Luzie A1 - Ribera Borrell, Enric A1 - Schütte, Christof A1 - Koltai, Peter T1 - Extending Transition Path Theory: Periodically Driven and Finite-Time Dynamics JF - Journal of Nonlinear Science Y1 - 2020 U6 - https://doi.org/https://doi.org/10.1007/s00332-020-09652-7 VL - 30 SP - 3321 EP - 3366 ER - TY - GEN A1 - Bittracher, Andreas A1 - Schütte, Christof ED - Junge, Oliver ED - Schütze, O. ED - Froyland, Gary ED - Ober-Blobaum, S. ED - Padberg-Gehle, E. T1 - A weak characterization of slow variables in stochastic dynamical systems T2 - Advances in Dynamics, Optimization and Computation. Series: Studies in Systems, Decision and Control. A volume dedicated to Michael Dellnitz on the occasion of his 60th birthday Y1 - 2020 SN - 978-3-030-51264-4 U6 - https://doi.org/10.1007/978-3-030-51264-4_6 VL - 304 SP - 132 EP - 150 PB - Springer International ER - TY - GEN A1 - Bittracher, Andreas A1 - Schütte, Christof T1 - A probabilistic algorithm for aggregating vastly undersampled large Markov chains N2 - Model reduction of large Markov chains is an essential step in a wide array of techniques for understanding complex systems and for efficiently learning structures from high-dimensional data. We present a novel aggregation algorithm for compressing such chains that exploits a specific low-rank structure in the transition matrix which, e.g., is present in metastable systems, among others. It enables the recovery of the aggregates from a vastly undersampled transition matrix which in practical applications may gain a speedup of several orders of mag- nitude over methods that require the full transition matrix. Moreover, we show that the new technique is robust under perturbation of the transition matrix. The practical applicability of the new method is demonstrated by identifying a reduced model for the large-scale traffic flow patterns from real-world taxi trip data. T3 - ZIB-Report - 20-21 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78688 UR - https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/7587 SN - 1438-0064 ER -