TY - GEN A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Gollmer, Ralf A1 - Hayn, Christine A1 - Henrion, Rene A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Mirkov, Radoslava A1 - Morsi, Antonio A1 - Römisch, Werner A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Mathematical Optimization for Challenging Network Planning Problems in Unbundled Liberalized Gas Markets N2 - The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor where united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We show that these new paradigms lead to new and challenging mathematical optimization problems. In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed. With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined. T3 - ZIB-Report - 13-13 KW - Gas Market Liberalization KW - Entry-Exit Model KW - Gas Network Access Regulation KW - Mixed-Integer Nonlinear Nonconvex Stochastic Optimization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17821 SN - 1438-0064 ER - TY - JOUR A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Gollmer, Ralf A1 - Hayn, Christine A1 - Henrion, René A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Mirkov, Radoslava A1 - Morsi, Antonio A1 - Römisch, Werner A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets JF - Energy Systems N2 - The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor were united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We discuss how these changing paradigms lead to new and challenging mathematical optimization problems. This includes the validation of nominations, that asks for the decision if the network’s capacity is sufficient to transport a specific amount of flow, the verification of booked capacities and the detection of available freely allocable capacities, and the topological extension of the network with new pipelines or compressors in order to increase its capacity. In order to solve each of these problems and to provide meaningful results for the practice, a mixture of different mathematical aspects have to be addressed, such as combinatorics, stochasticity, uncertainty, and nonlinearity. Currently, no numerical solver is available that can deal with such blended problems out-of-the-box. The main goal of our research is to develop such a solver, that moreover is able to solve instances of realistic size. In this article, we describe the main ingredients of our prototypical software implementations. Y1 - 2013 U6 - https://doi.org/10.1007/s12667-013-0099-8 VL - 5 IS - 3 SP - 449 EP - 473 PB - Springer Berlin Heidelberg CY - Berlin ER - TY - CHAP A1 - Hayn, Christine A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Schewe, Lars A1 - Schweiger, Jonas A1 - Spreckelsen, Klaus T1 - Perspectives T2 - Evaluating Gas Network Capacities N2 - After we discussed approaches to validate nominations and to verify bookings, we consider possible future research paths. This includes determining technical capacities and planning of network extensions. Y1 - 2015 SN - 9781611973686 VL - SIAM-MOS series on Optimization ER - TY - CHAP A1 - Hiller, Benjamin A1 - Hayn, Christine A1 - Heitsch, Holger A1 - Henrion, René A1 - Leövey, Hernan A1 - Möller, Andris A1 - Römisch, Werner T1 - Methods for verifying booked capacities T2 - Evaluating gas network capacities Y1 - 2015 SP - 291 EP - 315 PB - Society for Industrial and Applied Mathematics ER - TY - GEN A1 - Martin, Alexander A1 - Geißler, Björn A1 - Hayn, Christine A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Morsi, Antonio A1 - Pfetsch, Marc A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Optimierung Technischer Kapazitäten in Gasnetzen N2 - Die mittel- und längerfristige Planung für den Gastransport hat sich durch Änderungen in den regulatorischen Rahmenbedingungen stark verkompliziert. Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel diskutiert die hieraus resultierenden mathematischen Planungsprobleme, welche als Validierung von Nominierungen und Buchungen, Bestimmung der technischen Kapazität und Topologieplanung bezeichnet werden. Diese mathematischen Optimierungsprobleme werden vorgestellt und Lösungsansätze skizziert. T3 - ZIB-Report - 11-56 KW - Gasnetzplanung KW - Technische Kapazitäten KW - Nominierungsvalidierung KW - Buchungsvalidierung KW - Topologieplanung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15121 SN - 1438-0064 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Hayn, Christine A1 - Michaels, Dennis T1 - Mixed-Integer Linear Methods for Layout-Optimization of Screening Systems in Recovered Paper Production N2 - The industrial treatment of waste paper in order to regain valuable fibers from which recovered paper can be produced, involves several steps of preparation. One important step is the separation of stickies that are normally attached to the paper. If not properly separated, remaining stickies reduce the quality of the recovered paper or even disrupt the production process. For the mechanical separation process of fibers from stickies a separator screen is used. This machine has one input feed and two output streams, called the accept and the reject. In the accept the fibers are concentrated, whereas the reject has a higher concentration of stickies. The machine can be controlled by setting its reject rate. But even when the reject rate is set properly, after just a single screening step, the accept still has too many stickies, or the reject too many fibers. To get a proper separation, several separators have to be assembled into a network. From a mathematical point of view this problem can be seen as a multi-commodity network flow design problem with a nonlinear, controllable distribution function at each node. We present a nonlinear mixed-integer programming model for the simultaneous selection of a subset of separators, the network's topology, and the optimal setting of each separator. Numerical results are obtained via different types of linearization of the nonlinearities and the use of mixed-integer linear solvers, and compared with state-of-the-art global optimization software. T3 - ZIB-Report - 12-44 KW - Mixed-Integer Linear Programming KW - Nonlinear Programming KW - Piecewise Linear Approximation KW - Topology Optimization KW - Network Design Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16862 SN - 1438-0064 ER -