TY - GEN A1 - Orlowski, Sebastian A1 - Koster, Arie M.C.A. A1 - Raack, Christian A1 - Wessäly, Roland T1 - Two-layer Network Design by Branch-and-Cut featuring MIP-based Heuristics N2 - This paper deals with MIP-based primal heuristics to be used within a branch-and-cut approach for solving multi-layer telecommunication network design problems. Based on a mixed-integer programming formulation for two network layers, we present three heuristics for solving important subproblems, two of which solve a sub-MIP. On multi-layer planning instances with many parallel logical links, we show the effectiveness of our heuristics in finding good solutions early in the branch-and-cut search tree. T3 - ZIB-Report - 06-47 KW - multi-layer network design KW - integer programming KW - branch-and-cut KW - heuristics Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9412 ER - TY - JOUR A1 - Raack, Christian A1 - Koster, Arie M.C.A. A1 - Orlowski, Sebastian A1 - Wessäly, Roland T1 - On cut-based inequalities for capacitated network design polyhedra JF - Networks Y1 - 2011 UR - http://onlinelibrary.wiley.com/doi/10.1002/net.20395/abstract VL - 57 IS - 2 SP - 141 EP - 156 ER - TY - GEN A1 - Grötschel, Martin A1 - Raack, Christian A1 - Werner, Axel T1 - Towards optimizing the deployment of optical access networks N2 - In this paper we study the cost-optimal deployment of optical access networks considering variants of the problem such as fiber to the home (FTTH), fiber to the building (FTTB), fiber to the curb (FTTC), or fiber to the neighborhood (FTTN). We identify the combinatorial structures of the most important sub-problems arising in this area and model these, e.g., as capacitated facility location, concentrator location, or Steiner tree problems. We discuss modeling alternatives as well. We finally construct a “unified” integer programming model that combines all sub-models and provides a global view of all these FTTx problems. We also summarize computational studies of various special cases. T3 - ZIB-Report - 13-11 KW - FTTx, FTTH, FTTB, FTTC, FTTN, telecommunications, access networks, passive optical networks, network design, routing, energy efficiency Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18627 SN - 1438-0064 ER - TY - GEN A1 - Idzikowski, Filip A1 - Orlowski, Sebastian A1 - Raack, Christian A1 - Woesner, Hagen A1 - Wolisz, Adam T1 - Dynamic routing at different layers in IP-over-WDM networks -- Maximizing energy savings N2 - We estimate potential energy savings in IP-over-WDM networks achieved by switching off router line cards in low-demand hours. We compare three approaches to react on dynamics in the IP traffic over time, FUFL, DUFL and DUDL. They provide different levels of freedom in adjusting the routing of lightpaths in the WDM layer and the routing of demands in the IP layer. Using MILP models based on three realistic network topologies as well as realistic demands, power, and cost values, we show that already a simple monitoring of the lightpath utilization in order to deactivate empty line cards (FUFL) brings substantial benefits. The most significant savings, however, are achieved by rerouting traffic in the IP layer (DUFL), which allows emptying and deactivating lightpaths together with the corresponding line cards. A sophisticated reoptimization of the virtual topologies and the routing in the optical domain for every demand scenario (DUDL) yields nearly no additional profits in the considered networks. These results are independent of the ratio between the demand and capacity granularities, the time scale and the network topology, and show little dependency on the demand structure. T3 - ZIB-Report - 10-07 KW - network design KW - energy efficiency KW - power consumption KW - multi-layer KW - multi-hour KW - multi-period Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11692 SN - 1438-0064 ER - TY - CHAP A1 - Idzikowski, Filip A1 - Orlowski, Sebastian A1 - Raack, Christian A1 - Woesner, Hagen A1 - Wolisz, Adam T1 - Saving energy in IP-over-WDM networks by switching off line cards in low-demand scenarios T2 - Proceedings of the 14th conference on Optical network design and modeling Y1 - 2010 UR - http://portal.acm.org/citation.cfm?id=1834075.1834085 SP - 42 EP - 47 PB - IEEE Press CY - Piscataway, NJ, USA ER - TY - JOUR A1 - Idzikowski, Filip A1 - Orlowski, Sebastian A1 - Raack, Christian A1 - Woesner, Hagen A1 - Wolisz, Adam T1 - Dynamic routing at different layers in IP-over-WDM networks – Maximizing energy savings JF - Optical Switching and Networking, Special Issue on Green Communications Y1 - 2011 UR - http://opus.kobv.de/zib/volltexte/2010/1230/ ER - TY - GEN A1 - Raack, Christian A1 - Koster, Arie M.C.A. A1 - Wessäly, Roland T1 - On the strength of cut-based inequalities for capacitated network design polyhedra N2 - In this paper we study capacitated network design problems, differentiating directed, bidirected and undirected link capacity models. We complement existing polyhedral results for the three variants by new classes of facet-defining valid inequalities and unified lifting results. For this, we study the restriction of the problems to a cut of the network. First, we show that facets of the resulting cutset polyhedra translate into facets of the original network design polyhedra if the two subgraphs defined by the network cut are (strongly) connected. Second, we provide an analysis of the facial structure of cutset polyhedra, elaborating the differences caused by the three different types of capacity constraints. We present flow-cutset inequalities for all three models and show under which conditions these are facet-defining. We also state a new class of facets for the bidirected and undirected case and it is shown how to handle multiple capacity modules by Mixed Integer Rounding (MIR). T3 - ZIB-Report - 07-08 KW - cutset-polyhedra KW - flow-cutset inequalities KW - network design KW - mixed integer programming Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9512 ER - TY - GEN A1 - Raack, Christian A1 - Koster, Arie M.C.A. A1 - Orlowski, Sebastian A1 - Wessäly, Roland T1 - Capacitated network design using general flow-cutset inequalities N2 - This paper deals with directed, bidirected, and undirected capacitated network design problems. Using mixed integer rounding (MIR), we generalize flow-cutset inequalities to these three link types and to an arbitrary modular link capacity structure, and propose a generic separation algorithm. In an extensive computational study on 54 instances from the Survivable Network Design Library (SNDlib), we show that the performance of cplex can significantly be enhanced by this class of cutting planes. The computations reveal the particular importance of the subclass of cutset-inequalities. T3 - ZIB-Report - 07-14 KW - general flow-cutset inequalities KW - capacitated network design KW - mixed integer rounding KW - SNDlib Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9576 ER - TY - GEN A1 - Raack, Christian A1 - Raymond, Annie A1 - Werner, Axel A1 - Schlechte, Thomas T1 - Integer Programming and Sports Rankings N2 - Sports rankings are obtained by applying a system of rules to evaluate the performance of the participants in a competition. We consider rankings that result from assigning an ordinal rank to each competitor according to their performance. We develop an integer programming model for rankings that allows us to calculate the number of points needed to guarantee a team the ith position, as well as the minimum number of points that could yield the ith place. The model is very general and can thus be applied to many types of sports. We discuss examples coming from football (soccer), ice hockey, and Formula~1. We answer various questions and debunk a few myths along the way. Are 40 points enough to avoid relegation in the Bundesliga? Do 95 points guarantee the participation of a team in the NHL playoffs? Moreover, in the season restructuration currently under consideration in the NHL, will it be easier or harder to access the playoffs? Is it possible to win the Formula~1 World Championship without winning at least one race or without even climbing once on the podium? Finally, we observe that the optimal solutions of the aforementioned model are associated to extreme situations which are unlikely to happen. Thus, to get closer to realistic scenarios, we enhance the model by adding some constraints inferred from the results of the previous years. T3 - ZIB-Report - 13-19 KW - sport ranking KW - integer programming Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18068 SN - 1438-0064 ER - TY - GEN A1 - Poss, Michael A1 - Raack, Christian T1 - Affine recourse for the robust network design problem: between static and dynamic routing N2 - Affinely-Adjustable Robust Counterparts provide tractable alternatives to (two-stage) robust programs with arbitrary recourse. We apply them to robust network design with polyhedral demand uncertainty, introducing the affine routing principle. We compare the affine routing to the well-studied static and dynamic routing schemes for robust network design. All three schemes are embedded into the general framework of two-stage network design with recourse. It is shown that affine routing can be seen as a generalization of the widely used static routing still being tractable and providing cheaper solutions. We investigate properties on the demand polytope under which affine routings reduce to static routings and also develop conditions on the uncertainty set leading to dynamic routings being affine. We show however that affine routings suffer from the drawback that (even totally) dominated demand vectors are not necessarily supported by affine solutions. Uncertainty sets have to be designed accordingly. Finally, we present computational results on networks from SNDlib. We conclude that for these instances the optimal solutions based on affine routings tend to be as cheap as optimal network designs for dynamic routings. In this respect the affine routing principle can be used to approximate the cost for two-stage solutions with free recourse which are hard to compute. T3 - ZIB-Report - 11-03 KW - robust optimization KW - network design KW - recourse KW - affine adjustable robust counterparts KW - affine routing Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12122 ER -