TY - JOUR A1 - Vohra, Sumit Kumar A1 - Herrera, Kristian A1 - Tavhelidse-Suck, Tinatini A1 - Knoblich, Simon A1 - Seleit, Ali A1 - Boulanger-Weill, Jonathan A1 - Chambule, Sydney A1 - Aspiras, Ariel A1 - Santoriello, Cristina A1 - Randlett, Owen A1 - Wittbrodt, Joachim A1 - Aulehla, Alexander A1 - Lichtman, Jeff W. A1 - Fishman, Mark A1 - Hege, Hans-Christian A1 - Baum, Daniel A1 - Engert, Florian A1 - Isoe, Yasuko T1 - Multi-species community platform for comparative neuroscience in teleost fish JF - bioRxiv N2 - Studying neural mechanisms in complementary model organisms from different ecological niches in the same animal class can leverage the comparative brain analysis at the cellular level. To advance such a direction, we developed a unified brain atlas platform and specialized tools that allowed us to quantitatively compare neural structures in two teleost larvae, medaka (Oryzias latipes) and zebrafish (Danio rerio). Leveraging this quantitative approach we found that most brain regions are similar but some subpopulations are unique in each species. Specifically, we confirmed the existence of a clear dorsal pallial region in the telencephalon in medaka lacking in zebrafish. Further, our approach allows for extraction of differentially expressed genes in both species, and for quantitative comparison of neural activity at cellular resolution. The web-based and interactive nature of this atlas platform will facilitate the teleost community’s research and its easy extensibility will encourage contributions to its continuous expansion. Y1 - 2024 U6 - https://doi.org/10.1101/2024.02.14.580400 ER - TY - JOUR A1 - Boulanger-Weill, Jonathan A1 - Kaempf, Florian A1 - L. Schalek, Richard A1 - Petkova, Mariela A1 - Vohra, Sumit Kumar A1 - Savaliya, Jay H. A1 - Wu, Yuelong A1 - Schuhknecht, Gregor F. P. A1 - Naumann, Heike A1 - Eberle, Maren A1 - Kirchberger, Kim N. A1 - Rencken, Simone A1 - Bianco, Isaac H. A1 - Baum, Daniel A1 - Bene, Filippo Del A1 - Engert, Florian A1 - Lichtman, Jeff W. A1 - Bahl, Armin T1 - Correlative light and electron microscopy reveals the fine circuit structure underlying evidence accumulation in larval zebrafish JF - bioRxiv N2 - Accumulating information is a critical component of most circuit computations in the brain across species, yet its precise implementation at the synaptic level remains poorly understood. Dissecting such neural circuits in vertebrates requires precise knowledge of functional neural properties and the ability to directly correlate neural dynamics with the underlying wiring diagram in the same animal. Here we combine functional calcium imaging with ultrastructural circuit reconstruction, using a visual motion accumulation paradigm in larval zebrafish. Using connectomic analyses of functionally identified cells and computational modeling, we show that bilateral inhibition, disinhibition, and recurrent connectivity are prominent motifs for sensory accumulation within the anterior hindbrain. We also demonstrate that similar insights about the structure-function relationship within this circuit can be obtained through complementary methods involving cell-specific morphological labeling via photo-conversion of functionally identified neuronal response types. We used our unique ground truth datasets to train and test a novel classifier algorithm, allowing us to assign functional labels to neurons from morphological libraries where functional information is lacking. The resulting feature-rich library of neuronal identities and connectomes enabled us to constrain a biophysically realistic network model of the anterior hindbrain that can reproduce observed neuronal dynamics and make testable predictions for future experiments. Our work exemplifies the power of hypothesis-driven electron microscopy paired with functional recordings to gain mechanistic insights into signal processing and provides a framework for dissecting neural computations across vertebrates. Y1 - 2025 U6 - https://doi.org/10.1101/2025.03.14.643363 ER - TY - JOUR A1 - Petkova, Mariela D. A1 - Januszewski, Michał A1 - Blakely, Tim A1 - Herrera, Kristian J. A1 - Schuhknecht, Gregor F.P. A1 - Tiller, Robert A1 - Choi, Jinhan A1 - Schalek, Richard L. A1 - Boulanger-Weill, Jonathan A1 - Peleg, Adi A1 - Wu, Yuelong A1 - Wang, Shuohong A1 - Troidl, Jakob A1 - Vohra, Sumit Kumar A1 - Wei, Donglai A1 - Lin, Zudi A1 - Bahl, Armin A1 - Tapia, Juan Carlos A1 - Iyer, Nirmala A1 - Miller, Zachary T. A1 - Hebert, Kathryn B. A1 - Pavarino, Elisa C. A1 - Taylor, Milo A1 - Deng, Zixuan A1 - Stingl, Moritz A1 - Hockling, Dana A1 - Hebling, Alina A1 - Wang, Ruohong C. A1 - Zhang, Lauren L. A1 - Dvorak, Sam A1 - Faik, Zainab A1 - King, Jr., Kareem I. A1 - Goel, Pallavi A1 - Wagner-Carena, Julian A1 - Aley, David A1 - Chalyshkan, Selimzhan A1 - Contreas, Dominick A1 - Li, Xiong A1 - Muthukumar, Akila V. A1 - Vernaglia, Marina S. A1 - Carrasco, Teodoro Tapia A1 - Melnychuck, Sofia A1 - Yan, TingTing A1 - Dalal, Ananya A1 - DiMartino, James A1 - Brown, Sam A1 - Safo-Mensa, Nana A1 - Greenberg, Ethan A1 - Cook, Michael A1 - Finley, Samantha A1 - Flynn, Miriam A. A1 - Hopkins, Gary Patrick A1 - Kovalyak, Julie A1 - Leonard, Meghan A1 - Lohff, Alanna A1 - Ordish, Christopher A1 - Scott, Ashley L. A1 - Takemura, Satoko A1 - Smith, Claire A1 - Walsh, John J. A1 - Berger, Daniel R. A1 - Pfister, Hanspeter A1 - Berg, Stuart A1 - Knecht, Christopher A1 - Meissner, Geoffrey W. A1 - Korff, Wyatt A1 - Ahrens, Misha B A1 - Jain, Viren A1 - Lichtman, Jeff W. A1 - Engert, Florian T1 - A connectomic resource for neural cataloguing and circuit dissection of the larval zebrafish brain JF - bioRxiv N2 - We present a correlated light and electron microscopy (CLEM) dataset from a 7-day-old larval zebrafish, integrating confocal imaging of genetically labeled excitatory (vglut2a) and inhibitory (gad1b) neurons with nanometer-resolution serial section EM. The dataset spans the brain and anterior spinal cord, capturing >180,000 segmented soma, >40,000 molecularly annotated neurons, and 30 million synapses, most of which were classified as excitatory, inhibitory, or modulatory. To characterize the directional flow of activity across the brain, we leverage the synaptic and cell body annotations to compute region-wise input and output drive indices at single cell resolution. We illustrate the dataset’s utility by dissecting and validating circuits in three distinct systems: water flow direction encoding in the lateral line, recurrent excitation and contralateral inhibition in a hindbrain motion integrator, and functionally relevant targeted long-range projections from a tegmental excitatory nucleus, demonstrating that this resource enables rigorous hypothesis testing as well as exploratory-driven circuit analysis. The dataset is integrated into an open-access platform optimized to facilitate community reconstruction and discovery efforts throughout the larval zebrafish brain. Y1 - 2025 U6 - https://doi.org/10.1101/2025.06.10.658982 ER - TY - JOUR A1 - Vohra, Sumit Kumar A1 - Eberle, Maren A1 - Boulanger-Weill, Jonathan A1 - Petkova, Mariela D. A1 - Schuhknecht, Gregor F. P. A1 - Herrera, Kristian J. A1 - Kämpf, Florian A1 - Ruetten, Virginia M. S. A1 - Lichtman, Jeff W. A1 - Engert, Florian A1 - Randlett, Owen A1 - Bahl, Armin A1 - Isoe, Yasuko A1 - Hege, Hans-Christian A1 - Baum, Daniel T1 - Fishexplorer: A multimodal cellular atlas platform for neuronal circuit dissection in larval zebrafish JF - bioRxiv N2 - Understanding how neural circuits give rise to behavior requires comprehensive knowledge of neuronal morphology, connectivity, and function. Atlas platforms play a critical role in enabling the visualization, exploration, and dissemination of such information. Here, we present FishExplorer, an interactive and expandable community platform designed to integrate and analyze multimodal brain data from larval zebrafish. FishExplorer supports datasets acquired through light microscopy (LM), electron microscopy (EM), and X-ray imaging, all co-registered within a unified spatial coordinate system which enables seamless comparison of neuronal morphologies and synaptic connections. To further assist circuit analysis, FishExplorer includes a suite of tools for querying and visualizing connectivity at the whole-brain scale. By integrating data from recent large-scale EM reconstructions (presented in companion studies), FishExplorer enables researchers to validate circuit models, explore wiring principles, and generate new hypotheses. As a continuously evolving resource, FishExplorer is designed to facilitate collaborative discovery and serve the growing needs of the teleost neuroscience community. Y1 - 2025 U6 - https://doi.org/10.1101/2025.07.14.664689 ER -