TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - Analyzing the computational impact of MIQCP solver components N2 - We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances. T3 - ZIB-Report - 13-08 KW - mixed-integer quadratically constrained programming KW - mixed-integer programming KW - branch-and-cut KW - nonconvex KW - global optimization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17754 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Winkler, Michael T1 - Structure-driven fix-and-propagate heuristics for mixed integer programming N2 - Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early in the solving process and help to solve instances to optimality faster. In this paper, we present a scheme for primal start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved as an LP and the solution is rounded. If the rounded solution did not provide a feasible solution already, a sub-MIP is solved for the neighborhood defined by the variable fixings performed in the first phase. The global structures help to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about three out of five instances and therewith help to improve several performance measures for MIP solvers, including the primal integral and the average solving time. T3 - ZIB-Report - 17-56 KW - mixed-integer programming KW - primal heuristics KW - fix-and-propagate KW - large neighborhood search KW - domain propagation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65387 SN - 1438-0064 ER - TY - GEN A1 - Turner, Mark A1 - Berthold, Timo A1 - Besançon, Mathieu T1 - A Context-Aware Cutting Plane Selection Algorithm for Mixed-Integer Programming N2 - The current cut selection algorithm used in mixed-integer programming solvers has remained largely unchanged since its creation. In this paper, we propose a set of new cut scoring measures, cut filtering techniques, and stopping criteria, extending the current state-of-the-art algorithm and obtaining a 5\% performance improvement for SCIP over the MIPLIB 2017 benchmark set. T3 - ZIB-Report - 23-21 KW - cutting plane selection KW - mixed-integer programming Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-91691 SN - 1438-0064 ER - TY - GEN A1 - Turner, Mark A1 - Berthold, Timo A1 - Besançon, Mathieu A1 - Koch, Thorsten T1 - Cutting Plane Selection with Analytic Centers and Multiregression N2 - Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method. T3 - ZIB-Report - 22-28 KW - cut selection KW - anlalytic center KW - mixed-integer programming Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89065 SN - 1438-0064 ER - TY - GEN A1 - Turner, Mark A1 - Berthold, Timo A1 - Besançon, Mathieu A1 - Koch, Thorsten T1 - Branching via Cutting Plane Selection: Improving Hybrid Branching N2 - Cutting planes and branching are two of the most important algorithms for solving mixed-integer linear programs. For both algorithms, disjunctions play an important role, being used both as branching candidates and as the foundation for some cutting planes. We relate branching decisions and cutting planes to each other through the underlying disjunctions that they are based on, with a focus on Gomory mixed-integer cuts and their corresponding split disjunctions. We show that selecting branching decisions based on quality measures of Gomory mixed-integer cuts leads to relatively small branch-and-bound trees, and that the result improves when using cuts that more accurately represent the branching decisions. Finally, we show how the history of previously computed Gomory mixed-integer cuts can be used to improve the performance of the state-of-the-art hybrid branching rule of SCIP. Our results show a 4% decrease in solve time, and an 8% decrease in number of nodes over affected instances of MIPLIB 2017. T3 - ZIB-Report - 23-17 KW - cutting plane selection KW - variable selection KW - mixed-integer programming Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-91120 SN - 1438-0064 ER -