TY - JOUR A1 - Heinze, Rieke A1 - Dipankar, Anurag A1 - Henken, Cintia Carbajal A1 - Moseley, Christopher A1 - Sourdeval, Odran A1 - Trömel, Silke A1 - Xie, Xinxin A1 - Adamidis, Panos A1 - Ament, Felix A1 - Baars, Holger A1 - Barthlott, Christian A1 - Behrendt, Andreas A1 - Blahak, Ulrich A1 - Bley, Sebastian A1 - Brdar, Slavko A1 - Brueck, Matthias A1 - Crewell, Susanne A1 - Deneke, Hartwig A1 - Di Girolamo, Paolo A1 - Evaristo, Raquel A1 - Fischer, Jürgen A1 - Frank, Christopher A1 - Friederichs, Petra A1 - Göcke, Tobias A1 - Gorges, Ksenia A1 - Hande, Luke A1 - Hanke, Moritz A1 - Hansen, Akio A1 - Hege, Hans-Christian A1 - Hose, Corinna A1 - Jahns, Thomas A1 - Kalthoff, Norbert A1 - Klocke, Daniel A1 - Kneifel, Stefan A1 - Knippertz, Peter A1 - Kuhn, Alexander A1 - van Laar, Thriza A1 - Macke, Andreas A1 - Maurer, Vera A1 - Mayer, Bernhard A1 - Meyer, Catrin I. A1 - Muppa, Shravan K. A1 - Neggers, Roeland A. J. A1 - Orlandi, Emiliano A1 - Pantillon, Florian A1 - Pospichal, Bernhard A1 - Röber, Niklas A1 - Scheck, Leonhard A1 - Seifert, Axel A1 - Seifert, Patric A1 - Senf, Fabian A1 - Siligam, Pavan A1 - Simmer, Clemens A1 - Steinke, Sandra A1 - Stevens, Bjorn A1 - Wapler, Kathrin A1 - Weniger, Michael A1 - Wulfmeyer, Volker A1 - Zängl, Günther A1 - Zhang, Dan A1 - Quaas, Johannes T1 - Large-eddy simulations over Germany using ICON: a comprehensive evaluation JF - Quarterly Journal of the Royal Meteorological Society N2 - Large-eddy simulations (LES) with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) covering Germany are evaluated for four days in spring 2013 using observational data from various sources. Reference simulations with the established Consortium for Small-scale Modelling (COSMO) numerical weather prediction model and further standard LES codes are performed and used as a reference. This comprehensive evaluation approach covers multiple parameters and scales, focusing on boundary-layer variables, clouds and precipitation. The evaluation points to the need to work on parametrizations influencing the surface energy balance, and possibly on ice cloud microphysics. The central purpose for the development and application of ICON in the LES configuration is the use of simulation results to improve the understanding of moist processes, as well as their parametrization in climate models. The evaluation thus aims at building confidence in the model's ability to simulate small- to mesoscale variability in turbulence, clouds and precipitation. The results are encouraging: the high-resolution model matches the observed variability much better at small- to mesoscales than the coarser resolved reference model. In its highest grid resolution, the simulated turbulence profiles are realistic and column water vapour matches the observed temporal variability at short time-scales. Despite being somewhat too large and too frequent, small cumulus clouds are well represented in comparison with satellite data, as is the shape of the cloud size spectrum. Variability of cloud water matches the satellite observations much better in ICON than in the reference model. In this sense, it is concluded that the model is fit for the purpose of using its output for parametrization development, despite the potential to improve further some important aspects of processes that are also parametrized in the high-resolution model. Y1 - 2017 U6 - https://doi.org/10.1002/qj.2947 VL - 143 IS - 702 SP - 69 EP - 100 ER - TY - JOUR A1 - Gul, Raheem A1 - Schütte, Christof A1 - Bernhard, Stefan T1 - Mathematical modeling and sensitivity analysis of arterial anastomosis in arm arteries JF - Applied Mathematical Modelling Y1 - 2016 U6 - https://doi.org/10.1016/j.apm.2016.03.041 ER - TY - JOUR A1 - Pfetsch, Marc A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Geißler, Nina A1 - Gollmer, Ralf A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Morsi, Antonio A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Vigerske, Stefan A1 - Willert, Bernhard T1 - Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions JF - Optimization Methods and Software N2 - In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before. Y1 - 2014 U6 - https://doi.org/10.1080/10556788.2014.888426 PB - Taylor & Francis ER - TY - JOUR A1 - Huttary, Rudolf A1 - Goubergrits, Leonid A1 - Schütte, Christof A1 - Bernhard, Stefan T1 - Simulation, Identification and Statistical Variation in Cardiovascular Analysis (SISCA) - a Software Framework for Multi-compartment Lumped Modeling JF - Computers in Biology and Medicine Y1 - 2017 U6 - https://doi.org/10.1016/j.compbiomed.2017.05.021 VL - 87 SP - 104 EP - 123 ER - TY - JOUR A1 - Brüggemann, Stefan A1 - Bauer, Nanette A1 - Fuchs, Eberhard A1 - Polt, Axel A1 - Wagner, Bernhard A1 - Wulkow, Michael T1 - Support of Strategic Business Decisions at BASF’s Largest Integrated Production Site Based on Site-Wide Verbund Simulation JF - Computer Aided Chem. Eng. Y1 - 2008 VL - 25 SP - 925 EP - 930 ER - TY - CHAP A1 - Neugebauer, Mathias A1 - Janiga, Gabor A1 - Zachow, Stefan A1 - Krischek, Özlem A1 - Preim, Bernhard ED - Hauser, Helwig T1 - Generierung qualitativ hochwertiger Modelle für die Simulation von Blutfluss in zerebralen Aneurysmen T2 - Proc. of Simulation and Visualization 2008 Y1 - 2008 SP - 221 EP - 235 ER - TY - CHAP A1 - Dornheim, Jana A1 - Born, Silvia A1 - Zachow, Stefan A1 - Gessat, Michael A1 - Wellein, Daniela A1 - Strauß, Gero A1 - Preim, Bernhard A1 - Bartz, Dirk ED - Hauser, Helwig T1 - Bildanalyse, Visualisierung und Modellerstellung für die Implantatplanung im Mittelohr T2 - Proc. of Simulation and Visualization 2008 Y1 - 2008 SP - 139 EP - 154 ER - TY - GEN A1 - Gul, Raheem A1 - Schütte, Christof A1 - Bernhard, Stefan T1 - Mathematical modeling and sensitivity analysis of arterial anastomosis in arm arteries N2 - Cardiovascular diseases are one of the major problems in medicine today and the number of patients increases worldwide. To find the most efficient treatment, prior knowledge about function and dysfunction of the cardiovas- cular system is required and methods need to be developed that identify the disease in an early stage. Mathematical modeling is a powerful tool for prediction and investigation of cardiovascular diseases. It has been shown that the Windkessel model, being based on an analogy between electrical circuits and fluid flow, is a simple but effective method to model the human cardiovascular system. In this paper, we have applied parametric local sensitivity analysis (LSA) to a linear elastic model of the arm arteries, to find and rank sensitive param- eters that may be helpful in clinical diagnosis. A computational model for end-to-side anastomosis (superior ulnar collateral anastomosis with posterior ulnar recurrent, SUC-PUR) is carried out to study the effects of some clinically relevant haemodynamic parameters like blood flow resistance and terminal re- sistance on pressure and flow at different locations of the arm artery. In this context, we also discuss the spatio-temporal dependency of local sensitivities. The sensitivities with respect to cardiovascular parameters reveal the flow resistance and diameter of the vessels as most sensitive parameters. These parameters play a key role in diagnosis of severe stenosis and aneurysms. In contrast, wall thickness and elastic modulus are found to be less sensitive. T3 - ZIB-Report - 15-22 KW - computational cardiovascular model KW - cardiovascular parameters KW - sensitivity analysis KW - anastomosis KW - Windkessel model Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54339 SN - 1438-0064 ER - TY - JOUR A1 - Tack, Alexander A1 - Preim, Bernhard A1 - Zachow, Stefan T1 - Fully automated Assessment of Knee Alignment from Full-Leg X-Rays employing a "YOLOv4 And Resnet Landmark regression Algorithm" (YARLA): Data from the Osteoarthritis Initiative JF - Computer Methods and Programs in Biomedicine N2 - We present a method for the quantification of knee alignment from full-leg X-Rays. A state-of-the-art object detector, YOLOv4, was trained to locate regions of interests (ROIs) in full-leg X-Ray images for the hip joint, the knee, and the ankle. Residual neural networks (ResNets) were trained to regress landmark coordinates for each ROI.Based on the detected landmarks the knee alignment, i.e., the hip-knee-ankle (HKA) angle, was computed. The accuracy of landmark detection was evaluated by a comparison to manually placed landmarks for 360 legs in 180 X-Rays. The accuracy of HKA angle computations was assessed on the basis of 2,943 X-Rays. Results of YARLA were compared to the results of two independent image reading studies(Cooke; Duryea) both publicly accessible via the Osteoarthritis Initiative. The agreement was evaluated using Spearman's Rho, and weighted kappa as well as regarding the correspondence of the class assignment (varus/neutral/valgus). The average difference between YARLA and manually placed landmarks was less than 2.0+- 1.5 mm for all structures (hip, knee, ankle). The average mismatch between HKA angle determinations of Cooke and Duryea was 0.09 +- 0.63°; YARLA resulted in a mismatch of 0.10 +- 0.74° compared to Cooke and of 0.18 +- 0.64° compared to Duryea. Cooke and Duryea agreed almost perfectly with respect to a weighted kappa value of 0.86, and showed an excellent reliability as measured by a Spearman's Rho value of 0.99. Similar values were achieved by YARLA, i.e., a weighted kappa value of0.83 and 0.87 and a Spearman's Rho value of 0.98 and 0.99 to Cooke and Duryea,respectively. Cooke and Duryea agreed in 92% of all class assignments and YARLA did so in 90% against Cooke and 92% against Duryea. In conclusion, YARLA achieved results comparable to those of human experts and thus provides a basis for an automated assessment of knee alignment in full-leg X-Rays. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.cmpb.2021.106080 VL - 205 IS - 106080 ER - TY - JOUR A1 - Oeltze-Jaffra, Steffen A1 - Meuschke, Monique A1 - Neugebauer, Mathias A1 - Saalfeld, Sylvia A1 - Lawonn, Kai A1 - Janiga, Gabor A1 - Hege, Hans-Christian A1 - Zachow, Stefan A1 - Preim, Bernhard T1 - Generation and Visual Exploration of Medical Flow Data: Survey, Research Trends, and Future Challenges JF - Computer Graphics Forum N2 - Simulations and measurements of blood and air flow inside the human circulatory and respiratory system play an increasingly important role in personalized medicine for prevention, diagnosis, and treatment of diseases. This survey focuses on three main application areas. (1) Computational Fluid Dynamics (CFD) simulations of blood flow in cerebral aneurysms assist in predicting the outcome of this pathologic process and of therapeutic interventions. (2) CFD simulations of nasal airflow allow for investigating the effects of obstructions and deformities and provide therapy decision support. (3) 4D Phase-Contrast (4D PC) Magnetic Resonance Imaging (MRI) of aortic hemodynamics supports the diagnosis of various vascular and valve pathologies as well as their treatment. An investigation of the complex and often dynamic simulation and measurement data requires the coupling of sophisticated visualization, interaction, and data analysis techniques. In this paper, we survey the large body of work that has been conducted within this realm. We extend previous surveys by incorporating nasal airflow, addressing the joint investigation of blood flow and vessel wall properties, and providing a more fine-granular taxonomy of the existing techniques. From the survey, we extract major research trends and identify open problems and future challenges. The survey is intended for researchers interested in medical flow but also more general, in the combined visualization of physiology and anatomy, the extraction of features from flow field data and feature-based visualization, the visual comparison of different simulation results, and the interactive visual analysis of the flow field and derived characteristics. Y1 - 2019 U6 - https://doi.org/10.1111/cgf.13394 VL - 38 IS - 1 SP - 87 EP - 125 PB - Wiley ER - TY - GEN A1 - Pfetsch, Marc A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Geißler, Nina A1 - Gollmer, Ralf A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Morsi, Antonio A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Vigerske, Stefan A1 - Willert, Bernhard T1 - Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions N2 - In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously. T3 - ZIB-Report - 12-41 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16531 SN - 1438-0064 ER - TY - CHAP A1 - Bernhard, Stefan A1 - Zoukra, Kristine Al A1 - Schütte, Christof ED - Daskalaki, A. ED - Lazakidou, A. T1 - From non-invasive hemodynamic measurements towards patient-specific cardiovascular diagnosis T2 - Quality Assurance in Healthcare Service Delivery, Nursing and Personalized Medicine Y1 - 2010 UR - http://publications.imp.fu-berlin.de/945/ PB - Hershey, PA: Medical Information Science Reference ER - TY - CHAP A1 - Bernhard, Stefan A1 - Zoukra, Kristine Al A1 - Schütte, Christof ED - Knets, I. ED - Brebbia, C. ED - Miftahof, R. ED - Kasyanov, V. ED - Popov, V. T1 - Statistical parameter estimation and signal classification in cardiovascular diagnosis T2 - Modelling in Medicine and Biology Y1 - 2011 UR - http://publications.imp.fu-berlin.de/1070/ VL - IX IS - 15 PB - WIT Press CY - Southampton & Boston ER -