TY - JOUR A1 - Müller, Benjamin A1 - Serrano, Felipe A1 - Gleixner, Ambros T1 - Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms JF - SIAM Journal on Optimization N2 - One of the most fundamental ingredients in mixed-integer nonlinear programming solvers is the well- known McCormick relaxation for a product of two variables x and y over a box-constrained domain. The starting point of this paper is the fact that the convex hull of the graph of xy can be much tighter when computed over a strict, non-rectangular subset of the box. In order to exploit this in practice, we propose to compute valid linear inequalities for the projection of the feasible region onto the x-y-space by solving a sequence of linear programs akin to optimization-based bound tightening. These valid inequalities allow us to employ results from the literature to strengthen the classical McCormick relaxation. As a consequence, we obtain a stronger convexification procedure that exploits problem structure and can benefit from supplementary information obtained during the branch-and bound algorithm such as an objective cutoff. We complement this by a new bound tightening procedure that efficiently computes the best possible bounds for x, y, and xy over the available projections. Our computational evaluation using the academic solver SCIP exhibit that the proposed methods are applicable to a large portion of the public test library MINLPLib and help to improve performance significantly. Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72767 VL - 30 IS - 2 SP - 1339 EP - 1365 ER - TY - GEN A1 - Müller, Benjamin A1 - Serrano, Felipe A1 - Gleixner, Ambros T1 - Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms N2 - One of the most fundamental ingredients in mixed-integer nonlinear programming solvers is the well- known McCormick relaxation for a product of two variables x and y over a box-constrained domain. The starting point of this paper is the fact that the convex hull of the graph of xy can be much tighter when computed over a strict, non-rectangular subset of the box. In order to exploit this in practice, we propose to compute valid linear inequalities for the projection of the feasible region onto the x-y-space by solving a sequence of linear programs akin to optimization-based bound tightening. These valid inequalities allow us to employ results from the literature to strengthen the classical McCormick relaxation. As a consequence, we obtain a stronger convexification procedure that exploits problem structure and can benefit from supplementary information obtained during the branch-and bound algorithm such as an objective cutoff. We complement this by a new bound tightening procedure that efficiently computes the best possible bounds for x, y, and xy over the available projections. Our computational evaluation using the academic solver SCIP exhibit that the proposed methods are applicable to a large portion of the public test library MINLPLib and help to improve performance significantly. T3 - ZIB-Report - 19-15 KW - mixed-integer quadratically constrained programs KW - nonconvex KW - global optimization KW - separation KW - propagation KW - projection KW - bilinear terms Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72759 SN - 1438-0064 ER - TY - JOUR A1 - Müller, Benjamin A1 - Muñoz, Gonzalo A1 - Gasse, Maxime A1 - Gleixner, Ambros A1 - Lodi, Andrea A1 - Serrano, Felipe T1 - On generalized surrogate duality in mixed-integer nonlinear programming JF - Mathematical Programming N2 - The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global ϵ-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solvers can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm’s ability to generate strong dual bounds through extensive computational experiments. Y1 - 2022 U6 - https://doi.org/10.1007/s10107-021-01691-6 VL - 192 IS - 1 SP - 89 EP - 118 ER - TY - CHAP A1 - Müller, Benjamin A1 - Muñoz, Gonzalo A1 - Gasse, Maxime A1 - Gleixner, Ambros A1 - Lodi, Andrea A1 - Serrano, Felipe T1 - On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming T2 - Integer Programming and Combinatorial Optimization: 21th International Conference, IPCO 2020 N2 - The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global epsilon-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solver can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm’s ability to generate strong dual bounds through extensive computational experiments. Y1 - 2020 U6 - https://doi.org/10.1007/978-3-030-45771-6_25 SP - 322 EP - 337 ER - TY - GEN A1 - Müller, Benjamin A1 - Muñoz, Gonzalo A1 - Gasse, Maxime A1 - Gleixner, Ambros A1 - Lodi, Andrea A1 - Serrano, Felipe T1 - On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming N2 - The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global epsilon-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solver can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm’s ability to generate strong dual bounds through extensive computational experiments. T3 - ZIB-Report - 19-55 KW - surrogate relaxation KW - MINLP KW - nonconvex optimization Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-75179 SN - 1438-0064 ER - TY - GEN A1 - Maher, Stephen J. A1 - Fischer, Tobias A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Koch, Thorsten A1 - Lübbecke, Marco A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schenker, Sebastian A1 - Schwarz, Robert A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Weninger, Dieter A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 4.0 N2 - The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences. T3 - ZIB-Report - 17-12 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62170 SN - 1438-0064 ER - TY - JOUR A1 - Gleixner, Ambros A1 - Maher, Stephen A1 - Müller, Benjamin A1 - Pedroso, João Pedro T1 - Price-and-verify: a new algorithm for recursive circle packing using Dantzig–Wolfe decomposition JF - Annals of Operations Research N2 - Packing rings into a minimum number of rectangles is an optimization problem which appears naturally in the logistics operations of the tube industry. It encompasses two major difficulties, namely the positioning of rings in rectangles and the recursive packing of rings into other rings. This problem is known as the Recursive Circle Packing Problem (RCPP). We present the first dedicated method for solving RCPP that provides strong dual bounds based on an exact Dantzig–Wolfe reformulation of a nonconvex mixed-integer nonlinear programming formulation. The key idea of this reformulation is to break symmetry on each recursion level by enumerating one-level packings, i.e., packings of circles into other circles, and by dynamically generating packings of circles into rectangles. We use column generation techniques to design a “price-and-verify” algorithm that solves this reformulation to global optimality. Extensive computational experiments on a large test set show that our method not only computes tight dual bounds, but often produces primal solutions better than those computed by heuristics from the literature. Y1 - 2018 U6 - https://doi.org/10.1007/s10479-018-3115-5 VL - 284 IS - 2 SP - 527 EP - 555 PB - Springer US ER - TY - GEN A1 - Gleixner, Ambros A1 - Maher, Stephen J. A1 - Müller, Benjamin A1 - Pedroso, João Pedro T1 - Exact Methods for Recursive Circle Packing N2 - Packing rings into a minimum number of rectangles is an optimization problem which appears naturally in the logistics operations of the tube industry. It encompasses two major difficulties, namely the positioning of rings in rectangles and the recursive packing of rings into other rings. This problem is known as the Recursive Circle Packing Problem (RCPP). We present the first dedicated method for solving RCPP that provides strong dual bounds based on an exact Dantzig–Wolfe reformulation of a nonconvex mixed-integer nonlinear programming formulation. The key idea of this reformulation is to break symmetry on each recursion level by enumerating one-level packings, i.e., packings of circles into other circles, and by dynamically generating packings of circles into rectangles. We use column generation techniques to design a “price-and-verify” algorithm that solves this reformulation to global optimality. Extensive computational experiments on a large test set show that our method not only computes tight dual bounds, but often produces primal solutions better than those computed by heuristics from the literature. T3 - ZIB-Report - 17-07 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62039 ER - TY - GEN A1 - Gleixner, Ambros A1 - Eifler, Leon A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gemander, Patrick A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Viernickel, Jan Merlin A1 - Vigerske, Stefan A1 - Weninger, Dieter A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 5.0 N2 - This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 % faster overall and 23 % faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG. T3 - ZIB-Report - 17-61 KW - constraint integer programming KW - linear programming KW - mixed-integer linear programming KW - mixed-integer nonlinear programming KW - optimization solver KW - branch-and-cut KW - branch-and-price KW - column generation framework KW - parallelization KW - mixed-integer semidefinite programming KW - Steiner tree optimization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66297 SN - 1438-0064 ER - TY - JOUR A1 - Gleixner, Ambros A1 - Berthold, Timo A1 - Müller, Benjamin A1 - Weltge, Stefan T1 - Three Enhancements for Optimization-Based Bound Tightening JF - Journal of Global Optimization N2 - Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper is to discuss algorithmic techniques for an efficient implementation of OBBT. Most state-of-the-art MINLP solvers apply some restricted version of OBBT and it seems to be common belief that OBBT is beneficial if only one is able to keep its computational cost under control. To this end, we introduce three techniques to increase the efficiency of OBBT: filtering strategies to reduce the number of solved LPs, ordering heuristics to exploit simplex warm starts, and the generation of Lagrangian variable bounds (LVBs). The propagation of LVBs during tree search is a fast approximation to OBBT without the need to solve auxiliary LPs. We conduct extensive computational experiments on MINLPLib2. Our results indicate that OBBT is most beneficial on hard instances, for which we observe a speedup of 17% to 19% on average. Most importantly, more instances can be solved when using OBBT. Y1 - 2017 U6 - https://doi.org/10.1007/s10898-016-0450-4 VL - 67 IS - 4 SP - 731 EP - 757 ER -