TY - GEN A1 - Mehl, Lukas A1 - Lindner, Niels A1 - Bartoszuk, Karolina A1 - Zittel, Janina T1 - Prototypical warm-starts for demand-robust LP-based energy system optimization N2 - The expressiveness of energy system optimization models (ESOMs) depends on a multitude of exogenous parameters. For example, sound estimates of the future energy demand are essential to enable qualified decisions on long-term investments. However, the enormous demand fluctuations even on a fine-grained scale diminish the computational performance of large-scale ESOMs. We therefore propose a clustering-and-decomposition method for linear programming based ESOMs that first identifies and solves prototypical demand scenarios with the dual simplex algorithm, and then composes dual optimal prototype bases to a warm-start basis for the full model. We evaluate the feasibility and computational efficiency our approach on a real-world case study, using a sector-coupled ESOM with hourly resolution for the Berlin-Brandenburg area in Germany, based on the oemof framework. T3 - ZIB-Report - 25-15 Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-101242 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Bartoszuk, Karolina A1 - Debgupta, Srinwanti A1 - Gering, Marie-Claire A1 - Muschner, Christoph A1 - Zittel, Janina T1 - Warm-starting modeling to generate alternatives for energy transition paths in the Berlin-Brandenburg area N2 - Energy system optimization models are key to investigate energy transition paths towards a decarbonized future. Since this approach comes with intrinsic uncertainties, it is insufficient to compute a single optimal solution assuming perfect foresight to provide a profound basis for decision makers. The paradigm of modeling to generate alternatives enables to explore the near-optimal solution space to a certain extent. However, large-scale energy models require a non-negligible computation time to be solved. We propose to use warm start methods to accelerate the process of finding close-to-optimal alternatives. In an extensive case study for the energy transition of the Berlin-Brandenburg area, we make use of the sector-coupled linear programming oemof-B3 model to analyze a scenario for the year 2050 with a resolution of one hour and 100% reduction of greenhouse gas emissions. We demonstrate that we can actually achieve a significant computational speedup. T3 - ZIB-Report - 24-08 KW - Energy System Optimization KW - Energy Transition KW - Modeling to Generate Alternatives Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-97835 SN - 1438-0064 ER - TY - CHAP A1 - Muschner, Christoph A1 - Yüksel-Ergün, Inci A1 - Gering, Marie-Claire A1 - Bartoszuk, Karolina A1 - Haas, Sabine A1 - Zittel, Janina T1 - Sensitivity analysis of the energy transition path in the Berlin-Brandenburg area to uncertainties in operational and investment costs of diverse energy production technologies T2 - 37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2024) N2 - The investigation of energy transition paths toward a sustainable and decarbonized future under uncertainty is a critical aspect of contemporary energy planning and policy development. There are numerous methods for analysing uncertainties and sensitivities and many studies on sustainable transformation paths, but there is a lack of combined application to relevant use-cases. In this study, we investigate the sensitivity of energy transition paths to uncertainties in operational and investment costs of power plants in the metropolitan area of Berlin and its rural surroundings. By employing the linear programming energy system model oemof-B3, we extensively focus on the system's energy technologies, such as wind turbines, photovoltaics, hydro and combustion plants, and energy storages. Greenhouse gas reduction and electrification rates per commodity are realized by selected constraints. Our research aims to discern how investments in energy production capacities are influenced by uncertainties of other energy technologies' investment and operational costs in the system. We apply a quantitative approach to investigate such interdependencies of cost variations and their impact on long-term energy planning. Thus, the analysis sheds light on the robustness of energy transition paths in the face of these uncertainties. The region Berlin-Brandenburg serves as a case study and thus reflects on the present space conflicts to meet energy demands in urban and suburban areas and their rural surroundings. An electricity-intensive scenario is selected that assumes a 100 % reduction in greenhouse gas emissions by 2050. With the results of the case study, we show how our approach enables rural and metropolitan decision-makers to collaborate in achieving sustainable energy. Decision-making in long-term energy planning can be made more robust and flexible by acknowledging the identified sensitivities and enable such regions better to navigate challenges and uncertainties associated with sustainable energy planning. Y1 - 2024 U6 - https://doi.org/10.52202/077185-0115 SP - 1339 EP - 1350 ER - TY - CHAP A1 - Lindner, Niels A1 - Bartoszuk, Karolina A1 - Debgupta, Srinwanti A1 - Gering, Marie-Claire A1 - Muschner, Christoph A1 - Zittel, Janina T1 - Warm-starting modeling to generate alternatives for energy transition paths in the Berlin-Brandenburg area T2 - Operations Research Proceedings 2024. OR 2024 N2 - Energy system optimization models are key to investigate energy transition paths towards a decarbonized future. Since this approach comes with intrinsic uncertainties, it is insufficient to compute a single optimal solution assuming perfect foresight to provide a profound basis for decision makers. The paradigm of modeling to generate alternatives enables to explore the near-optimal solution space to a certain extent. However, large-scale energy models require a non-negligible computation time to be solved. We propose to use warm start methods to accelerate the process of finding close-to-optimal alternatives. In an extensive case study for the energy transition of the Berlin-Brandenburg area, we make use of the sector-coupled linear programming oemof-B3 model to analyze a scenario for the year 2050 with a resolution of one hour and 100% reduction of greenhouse gas emissions. We demonstrate that we can actually achieve a significant computational speedup. Y1 - 2025 U6 - https://doi.org/10.1007/978-3-031-92575-7_35 SP - 248 EP - 253 ER - TY - GEN A1 - Lindner, Niels A1 - Mehl, Lukas A1 - Bartoszuk, Karolina A1 - Berendes, Sarah A1 - Zittel, Janina T1 - Demand Uncertainty in Energy Systems: Scenario Catalogs vs. Integrated Robust Optimization N2 - Designing efficient energy systems is indispensable for shaping a more sustainable society. This involves making infrastructure investment decisions that must be valid for a long-term time horizon. While energy system optimization models constitute a powerful technique to support planning decisions, they need to cope with inherent uncertainty. For example, predicting future demand on a scale of decades is not only an intricate challenge in itself, but small fluctuations in such a forecast might also largely impact the layout of a complex energy system. In this paper, we compare two methodologies of capturing demand uncertainty for linear-programming based energy system optimization models. On one hand, we generate and analyze catalogs of varying demand scenarios, where each individual scenario is considered independently, so that the optimization produces scenario-specific investment pathways. On the other hand, we make use of robust linear programming to meet the demand of all scenarios at once. Since including a multitude of scenarios increases the size and complexity of the optimization model, we will show how to use warm-starting approaches to accelerate the computation process, by exploiting the similar structure of the linear program across different demand inputs. This allows to integrate a meaningful number of demand scenarios with fully-fledged energy system models. We demonstrate the practical use of our methods in a case study of the Berlin-Brandenburg area in Germany, a region that contains both a metropolitan area and its rural surroundings. As a backbone, we use the open-source framework oemof to create a sector-coupled optimization model for planning an energy system with up to 100% reduction of greenhouse gas emissions. This model features a fine-grained temporal resolution of one hour for the full year 2050. We consider uncertainty in demand for electricity, hydrogen, natural gas, central, and decentral heat. Based on our computations, we analyze the trade-offs in terms of quality and computation time for scenario catalogs and the robust optimization approach. We further demonstrate that our procedure provides a valuable strategy for decision makers to gain insight on the robustness and sensitivity of solutions regarding demand variability. T3 - ZIB-Report - 25-19 Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-102404 SN - 1438-0064 ER - TY - CHAP A1 - Lindner, Niels A1 - Mehl, Lukas A1 - Bartoszuk, Karolina A1 - Berendes, Sarah A1 - Zittel, Janina T1 - Demand Uncertainty in Energy Systems: Scenario Catalogs vs. Integrated Robust Optimization T2 - Proceedings of the 38th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems N2 - Designing efficient energy systems is indispensable for shaping a more sustainable society. This involves making infrastructure investment decisions that must be valid for a long-term time horizon. While energy system optimization models constitute a powerful technique to support planning decisions, they need to cope with inherent uncertainty. For example, predicting future demand on a scale of decades is not only an intricate challenge in itself, but small fluctuations in such a forecast might also largely impact the layout of a complex energy system. In this paper, we compare two methodologies of capturing demand uncertainty for linear-programming based energy system optimization models. On one hand, we generate and analyze catalogs of varying demand scenarios, where each individual scenario is considered independently, so that the optimization produces scenario-specific investment pathways. On the other hand, we make use of robust linear programming to meet the demand of all scenarios at once. Since including a multitude of scenarios increases the size and complexity of the optimization model, we will show how to use warm-starting approaches to accelerate the computation process, by exploiting the similar structure of the linear program across different demand inputs. This allows to integrate a meaningful number of demand scenarios with fully-fledged energy system models. We demonstrate the practical use of our methods in a case study of the Berlin-Brandenburg area in Germany, a region that contains both a metropolitan area and its rural surroundings. As a backbone, we use the open-source framework oemof to create a sector-coupled optimization model for planning an energy system with up to 100% reduction of greenhouse gas emissions. This model features a fine-grained temporal resolution of one hour for the full year 2050. We consider uncertainty in demand for electricity, hydrogen, natural gas, central, and decentral heat. Based on our computations, we analyze the trade-offs in terms of quality and computation time for scenario catalogs and the robust optimization approach. We further demonstrate that our procedure provides a valuable strategy for decision makers to gain insight on the robustness and sensitivity of solutions regarding demand variability. Y1 - 2025 ER -