TY - JOUR A1 - Straube, Arthur A1 - Kowalik, Bartosz G. A1 - Netz, Roland R. A1 - Höfling, Felix T1 - Rapid onset of molecular friction in liquids bridging between the atomistic and hydrodynamic pictures JF - Commun. Phys. N2 - Friction in liquids arises from conservative forces between molecules and atoms. Although the hydrodynamics at the nanoscale is subject of intense research and despite the enormous interest in the non-Markovian dynamics of single molecules and solutes, the onset of friction from the atomistic scale so far could not be demonstrated. Here, we fill this gap based on frequency-resolved friction data from high-precision simulations of three prototypical liquids, including water. Combining with theory, we show that friction in liquids emerges abruptly at a characteristic frequency, beyond which viscous liquids appear as non-dissipative, elastic solids. Concomitantly, the molecules experience Brownian forces that display persistent correlations. A critical test of the generalised Stokes–Einstein relation, mapping the friction of single molecules to the visco-elastic response of the macroscopic sample, disproves the relation for Newtonian fluids, but substantiates it exemplarily for water and a moderately supercooled liquid. The employed approach is suitable to yield insights into vitrification mechanisms and the intriguing mechanical properties of soft materials. Y1 - 2020 U6 - https://doi.org/10.1038/s42005-020-0389-0 VL - 3 SP - 126 PB - Nature ER - TY - JOUR A1 - Abbott, Joshua L. A1 - Straube, Arthur A1 - Aarts, Dirk G. A. L. A1 - Dullens, Roel P. A. T1 - Transport of a colloidal particle driven across a temporally oscillating optical potential energy landscape JF - New J. Phys. N2 - A colloidal particle is driven across a temporally oscillating one-dimensional optical potential energy landscape and its particle motion is analysed. Different modes of dynamic mode locking are observed and are confirmed with the use of phase portraits. The effect of the oscillation frequency on the mode locked step width is addressed and the results are discussed in light of a high-frequency theory and compared to simulations. Furthermore, the influence of the coupling between the particle and the optical landscape on mode locking is probed by increasing the maximum depth of the optical landscape. Stronger coupling is seen to increase the width of mode locked steps. Finally, transport across the temporally oscillating landscape is studied by measuring the effective diffusion coefficient of a mobile particle, which is seen to be highly sensitive to the driving velocity and mode locking. Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab3765 VL - 21 SP - 083027 ER - TY - JOUR A1 - Straube, Arthur A1 - Pagès, Josep M. A1 - Tierno, Pietro A1 - Ignés-Mullol, Jordi A1 - Sagués, Francesc T1 - Collective dynamics and conformal ordering in electrophoretically driven nematic colloids JF - Phys. Rev. Research N2 - We present a theoretical framework to understand the collective dynamics of an ensemble of electrophoretically driven colloidal particles that are forced to assemble around a single topological defect in a nematic liquid crystal by an alternating current electric field. Our generic model combines phoretic propulsion with electrostatic interactions and liquid-crystal-mediated hydrodynamics, which are effectively cast into a long-range interparticle repulsion, while nematic elasticity plays a subdominant role. Simulations based on this model fully capture the collective organization process observed in the experiments and other striking effects as the emergence of conformal ordering and a nearly frequency-independent repulsive interaction above 10Hz. Our results demonstrate the importance of hydrodynamic interactions on the assembly of driven microscale matter in anisotropic media. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevResearch.1.022008 VL - 1 SP - 022008 ER - TY - JOUR A1 - Stoop, Ralph L. A1 - Straube, Arthur A1 - Johansen, Tom H. A1 - Tierno, Pietro T1 - Collective directional locking of colloidal monolayers on a periodic substrate JF - Phys. Rev. Lett. N2 - We investigate the directional locking effects that arise when a monolayer of paramagnetic colloidal particles is driven across a triangular lattice of magnetic bubbles. We use an external rotating magnetic field to generate a two-dimensional traveling wave ratchet forcing the transport of particles along a direction that intersects two crystallographic axes of the lattice. We find that, while single particles show no preferred direction, collective effects induce transversal current and directional locking at high density via a spontaneous symmetry breaking. The colloidal current may be polarized via an additional bias field that makes one transport direction energetically preferred. Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevLett.124.058002 VL - 124 SP - 058002 ER - TY - JOUR A1 - Straube, Arthur A1 - Winkelmann, Stefanie A1 - Schütte, Christof A1 - Höfling, Felix T1 - Stochastic pH oscillations in a model of the urea–urease reaction confined to lipid vesicles JF - J. Phys. Chem. Lett. N2 - The urea-urease clock reaction is a pH switch from acid to basic that can turn into a pH oscillator if it occurs inside a suitable open reactor. We numerically study the confinement of the reaction to lipid vesicles, which permit the exchange with an external reservoir by differential transport, enabling the recovery of the pH level and yielding a constant supply of urea molecules. For microscopically small vesicles, the discreteness of the number of molecules requires a stochastic treatment of the reaction dynamics. Our analysis shows that intrinsic noise induces a significant statistical variation of the oscillation period, which increases as the vesicles become smaller. The mean period, however, is found to be remarkably robust for vesicle sizes down to approximately 200 nm, but the periodicity of the rhythm is gradually destroyed for smaller vesicles. The observed oscillations are explained as a canard-like limit cycle that differs from the wide class of conventional feedback oscillators. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpclett.1c03016 VL - 12 SP - 9888 EP - 9893 ER - TY - GEN A1 - Straube, Arthur A1 - Winkelmann, Stefanie A1 - Höfling, Felix T1 - Accurate reduced models for the pH oscillations in the urea-urease reaction confined to giant lipid vesicles N2 - Our theoretical study concerns an urea-urease-based pH oscillator confined to giant lipid vesicles. Under suitable conditions, differential transport of urea and hydrogen ion across the unilamellar vesicle membrane periodically resets the pH clock that switches the system from acid to basic, resulting in self-sustained oscillations. We analyse the structure of the limit cycle, which controls the dynamics for giant vesicles and dominates the strongly stochastic oscillations in small vesicles of submicrometer size. To this end, we derive reduced models, amenable to analytic treatments, and show that the accuracy of predictions, including the period of oscillations, is highly sensitive to the choice of the reduction scheme. In particular, we suggest an accurate two-variable model and show its equivalence to a three-variable model that admits an interpretation in terms of a chemical reaction network. The accurate description of a single pH oscillator appears crucial for rationalizing experiments and understanding communication of vesicles and synchronization of rhythms. T3 - ZIB-Report - 22-21 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-88179 SN - 1438-0064 ER -