TY - CHAP A1 - Fügenschuh, Armin A1 - Hess, Wolfgang A1 - Martin, Alexander A1 - Ulbrich, Stefan ED - Groche, P. T1 - Diskrete und kontinuierliche Modelle zur Topologie- und Geometrie-Optimierung von Blechprofilen T2 - Sonderforschungsbereich 666 Y1 - 2007 SP - 37 EP - 47 ER - TY - CHAP A1 - Fügenschuh, Armin A1 - Göttlich, Simone A1 - Herty, Michael ED - Oberweis, A. ED - Weinhardt, C. ED - Gimpel, H. ED - Koschmider, A. ED - Pankratius, V. ED - Schnizler, B. T1 - Water Contamination Detection T2 - eOrganisation Y1 - 2007 SP - 501 EP - 518 ER - TY - CHAP A1 - Fügenschuh, Armin A1 - Höfler, Benjamin ED - Gottlieb, J. ED - Raidl, G. T1 - Parametrized GRASP Heuristics for Three-Index Assignment T2 - Evolutionary Computation in Combinatorial Optimization Y1 - 2006 SP - 61 EP - 72 ER - TY - CHAP A1 - Fügenschuh, Armin ED - Waldmann, Karl-Heinz ED - Stocker, Ulrike T1 - Scheduling Buses and School Starting Times T2 - Operations Research Proceedings Y1 - 2007 SP - 17 EP - 22 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Fügenschuh, Armin A1 - Klug, Torsten A1 - Schang, Thilo A1 - Schlechte, Thomas A1 - Schülldorf, Hanno T1 - The Freight Train Routing Problem N2 - We consider the following freight train routing problem (FTRP). Given is a transportation network with fixed routes for passenger trains and a set of freight trains (requests), each defined by an origin and destination station pair. The objective is to calculate a feasible route for each freight train such that a sum of all expected delays and all running times is minimal. Previous research concentrated on microscopic train routings for junctions or inside major stations. Only recently approaches were developed to tackle larger corridors or even networks. We investigate the routing problem from a strategic perspective, calculating the routes in a macroscopic transportation network of Deutsche Bahn AG. Here macroscopic refers to an aggregation of complex real-world structures are into fewer network elements. Moreover, the departure and arrival times of freight trains are approximated. The problem has a strategic character since it asks only for a coarse routing through the network without the precise timings. We give a mixed-integer nonlinear programming~(MINLP) formulation for FTRP, which is a multi-commodity flow model on a time-expanded graph with additional routing constraints. The model's nonlinearities are due to an algebraic approximation of the delays of the trains on the arcs of the network by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model~(MILP) by piecewise linear approximation. The latter is solved by a state of the art MILP solver for various real-world test instances. T3 - ZIB-Report - 13-36 KW - Mixed-Integer Nonlinear Programming KW - multi-commodity flows KW - freight train routing Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18991 ER - TY - CHAP A1 - Eisenblätter, Andreas A1 - Fügenschuh, Armin A1 - Koch, Thorsten A1 - Koster, Arie M.C.A. A1 - Martin, Alexander A1 - Pfender, Tobias A1 - Wegel, Oliver A1 - Wessäly, Roland ED - G. Anandalingam, S. T1 - Mathematical Model of Feasible Network Configurations for UMTS T2 - Telecommunications network design and management Y1 - 2002 SP - 1 EP - 24 PB - Kluwer ER - TY - GEN A1 - Eisenblätter, Andreas A1 - Fügenschuh, Armin A1 - Geerdes, Hans-Florian A1 - Koch, Thorsten A1 - Türke, Ulrich A1 - Meijerink, Ellen T1 - XML Data Specification and Documentation Y1 - 2003 PB - IST-2000-28088 MOMENTUM Technical Report ER - TY - CHAP A1 - Fügenschuh, Armin ED - Görts, W. T1 - Von Mikrochips, Proteinen und Schulbussen – Projektproseminare im Mathematikstudium T2 - Projektveranstaltungen in Mathematik, Informatik und Ingenieurwissenschaften Y1 - 2003 SP - 21 EP - 43 PB - UVW UniversitätsVerlagWebler, Bielefeld ER - TY - GEN A1 - Fügenschuh, Armin T1 - Einsatzplanung von ÖPNV-Bussen Y1 - 2002 PB - Mathematische Modellierung mit Schülern - Die Modellierungswoche im Kloster Höchst. M. Kiehl, A. Schich, S. Purpus (Hrsg.). Zentrum für Mathematik, Bensheim ER - TY - GEN A1 - Fügenschuh, Armin T1 - Proteinfaltung Y1 - 2001 PB - Mathematische Modellierung mit Schülern - Die Modellierungswoche im Kloster Höchst. M. Kiehl, A. Schich, S. Purpus (Hrsg.). Zentrum für Mathematik, Bensheim ER -