TY - JOUR A1 - Fügenschuh, Armin A1 - Fügenschuh, Marzena T1 - Integer Linear Programming Models for Topology Optimization in Sheet Metal Design JF - Mathematical Methods of Operations Research Y1 - 2008 VL - 68 IS - 2 SP - 313 EP - 331 ER - TY - GEN A1 - Eisenblätter, Andreas A1 - Fügenschuh, Armin A1 - Koch, Thorsten A1 - Koster, Arie M.C.A. A1 - Martin, Alexander A1 - Pfender, Tobias A1 - Wegel, Oliver A1 - Wessäly, Roland T1 - Modelling Feasible Network Configurations for UMTS N2 - A model for the optimisation of the location and configuration of base stations in a UMTS network is described. The focus is primarily on modelling the configuration problem sufficiently accurate using mixed-integer variables and (essentially) linear constraints. These constraints reflect the limited downlink code capacity in each cell, the interference limitations for successful up- and downlink transmissions, the need for sufficiently strong (cell) pilot signals, and the potential gain for mobiles from being in soft(er) hand-over. It is also explained how to use the model as a basis for rating network configurations. T3 - ZIB-Report - 02-16 KW - UMTS KW - radio interface KW - network planning KW - configuration KW - perfect power control KW - mathematical model KW - mixed integer programming KW - MOMENTUM KW - IST-20 Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6837 ER - TY - GEN A1 - Eisenblätter, Andreas A1 - Fügenschuh, Armin A1 - Geerdes, Hans-Florian A1 - Junglas, Daniel A1 - Koch, Thorsten A1 - Martin, Alexander T1 - Optimization Methods for UMTS Radio Network Planning N2 - The UMTS radio network planning problem poses the challenge of designing a cost-effective network that provides users with sufficient coverage and capacity. We describe an optimization model for this problem that is based on comprehensive planning data of the EU project MOMENTUM. We present heuristic mathematical methods for this realistic model, including computational results. T3 - ZIB-Report - 03-41 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7637 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Gollmer, Ralf A1 - Hayn, Christine A1 - Henrion, Rene A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Mirkov, Radoslava A1 - Morsi, Antonio A1 - Römisch, Werner A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Mathematical Optimization for Challenging Network Planning Problems in Unbundled Liberalized Gas Markets N2 - The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor where united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We show that these new paradigms lead to new and challenging mathematical optimization problems. In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed. With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined. T3 - ZIB-Report - 13-13 KW - Gas Market Liberalization KW - Entry-Exit Model KW - Gas Network Access Regulation KW - Mixed-Integer Nonlinear Nonconvex Stochastic Optimization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17821 SN - 1438-0064 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Szabó, Jácint T1 - Gas Network Topology Optimization for Upcoming Market Requirements N2 - Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed. T3 - ZIB-Report - 11-09 KW - Mathematical Optimization KW - Gas Distribution Networks KW - Topology Planning Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12348 ER - TY - GEN A1 - Dittel, Agnes A1 - Fügenschuh, Armin A1 - Martin, Alexander T1 - Polyhedral Aspects of Self-Avoiding Walks N2 - In this paper, we study self-avoiding walks of a given length on a graph. We consider a formulation of this problem as a binary linear program. We analyze the polyhedral structure of the underlying polytope and describe valid inequalities. Proofs for their facial properties for certain special cases are given. In a variation of this problem one is interested in optimal configurations, where an energy function measures the benefit if certain path elements are placed on adjacent vertices of the graph. The most prominent application of this problem is the protein folding problem in biochemistry. On a set of selected instances, we demonstrate the computational merits of our approach. T3 - ZIB-Report - 11-11 KW - Polyhedral Combinatorics KW - Integer Programming KW - Self-Avoiding Path KW - Protein Folding Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12576 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Humpola, Jesco T1 - A Unified View on Relaxations for a Nonlinear Network Flow Problem N2 - We consider a nonlinear nonconvex network flow problem that arises, for example, in natural gas or water transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem is how to numerically compute this flow and pressures. We review an existing approach of Maugis (1977) and extend it to the case of networks with active elements (for example, compressors). We further examine different ways of relaxations for the nonlinear network flow model. We compare different approaches based on nonlinear optimization numerically on a set of test instances. T3 - ZIB-Report - 13-31 KW - Nonlinear Network Flow KW - Mixed-Integer Nonlinear Programming KW - Relaxations Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18857 ER - TY - GEN A1 - Scheumann, René A1 - Vierhaus, Ingmar A1 - Chang, Ya-Ju A1 - Fügenschuh, Armin A1 - Finkbeiner, Matthias T1 - Identification of trade-offs for sustainable manufacturing of a Bamboo Bike by System Dynamics N2 - We develop a generic System Dynamic model to simulate the production, machines, employees, waste, and capital flows of a manufacturing company. In a second step, this model is specialised by defining suit-able input data to represent a bicycle manufacturing company in a developing country. We monitor a set of sustainability indicators to understand the social, environmental and economic impact of the company, and to estimate managerial decisions to be taken in order to improve on these criteria. We show that the social and environmental situation can be improved over time without sacrificing the economic success of the company's business. T3 - ZIB-Report - 13-32 KW - System Dynamics KW - Modelling KW - Life Cycle Sustainability Assessment KW - Sustainability Indicators Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18895 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Fügenschuh, Armin A1 - Klug, Torsten A1 - Schang, Thilo A1 - Schlechte, Thomas A1 - Schülldorf, Hanno T1 - The Freight Train Routing Problem N2 - We consider the following freight train routing problem (FTRP). Given is a transportation network with fixed routes for passenger trains and a set of freight trains (requests), each defined by an origin and destination station pair. The objective is to calculate a feasible route for each freight train such that a sum of all expected delays and all running times is minimal. Previous research concentrated on microscopic train routings for junctions or inside major stations. Only recently approaches were developed to tackle larger corridors or even networks. We investigate the routing problem from a strategic perspective, calculating the routes in a macroscopic transportation network of Deutsche Bahn AG. Here macroscopic refers to an aggregation of complex real-world structures are into fewer network elements. Moreover, the departure and arrival times of freight trains are approximated. The problem has a strategic character since it asks only for a coarse routing through the network without the precise timings. We give a mixed-integer nonlinear programming~(MINLP) formulation for FTRP, which is a multi-commodity flow model on a time-expanded graph with additional routing constraints. The model's nonlinearities are due to an algebraic approximation of the delays of the trains on the arcs of the network by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model~(MILP) by piecewise linear approximation. The latter is solved by a state of the art MILP solver for various real-world test instances. T3 - ZIB-Report - 13-36 KW - Mixed-Integer Nonlinear Programming KW - multi-commodity flows KW - freight train routing Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18991 ER - TY - GEN A1 - Frank, Martin A1 - Fügenschuh, Armin A1 - Herty, Michael A1 - Schewe, Lars T1 - The Coolest Path Problem N2 - We introduce the coolest path problem, which is a mixture of two well-known problems from distinct mathematical fields. One of them is the shortest path problem from combinatorial optimization. The other is the heat conduction problem from the field of partial differential equations. Together, they make up a control problem, where some geometrical object traverses a digraph in an optimal way, with constraints on intermediate or the final state. We discuss some properties of the problem and present numerical solution techniques. We demonstrate that the problem can be formulated as a linear mixed-integer program. Numerical solutions can thus be achieved within one hour for instances with up to 70 nodes in the graph. T3 - ZIB-Report - 09-37 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11571 SN - 1438-0064 ER -